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The analysis and interpretation the spatiotemporal patterns of river water quality are a critical element in
the assessment, restoration, and protection of local and region water quality. In this case study, multi-
variate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor
analysis (FA) and discriminant analysis (DA), had been integrated to evaluate and interpret spatiotem-
poral variations of water quality in Xiangxi River, with a 5-years (2002e2006) continual monitoring data
(14 parameters at 12 sites). Hierarchical cluster analysis revealed all sites could be grouped into three
clusters representing different levels of pollution: relatively less polluted upper catchments sites (US),
medium polluted Middle catchments sites (MS), and highly polluted lower catchments sites (LS). Factor
analysis/principal component analysis was used to explore the most important factors determining the
spatiotemporal dynamics of water quality in Xiangxi River. Varifactors obtained from the factor analysis
indicated the parameters responsible for water quality variation were mainly related to soluble salts
(natural), point source pollution of phosphorus and non-point pollution of nitrogen (anthropogenic).
Discriminant analysis provided an important data reduction as it uses six parameters (TN, SiO2, hardness,
Ca2þ, WT and pH), affording 70.5% correct assignations in temporal analysis, and two parameters (NO3eN
and Alk), affording 55.9% correct assignations in spatial analysis, of three different regions in the basin.
The low correct assignation in spatial analysis was related to the anthropogenic influence. This study
suggested that multivariate statistical techniques are useful tools for identification of important water
quality monitoring sites parameters and design of a monitoring network for the effective management of
water resources.

� 2012 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

Rivers have always been the most important freshwater
resources for human consumption, agricultural needs, and indus-
trial and recreational purposes (Razmkhah et al., 2010; Varol et al.,
2011). However, many rivers/streams in the developing countries
are heavily polluted due to anthropogenic activities (Jonnalagadda
and Mgere, 2001), especially in China (Jaehnig and Cai, 2010).
Pollution of surface water with chemicals and excess nutrients is of
great environmental concern worldwide (Ouyang, 2005; Koklu
et al., 2010). The excess concentrations of chemicals and biologi-
cally available nutrients can lead to diverse problems such as toxic
algal blooms, loss of oxygen, fish kills, loss of biodiversity and loss of
aquatic plant beds (Voutsa et al., 2001). The degradation of water
quality due to these contaminants has resulted in altered species
nd INQUA. All rights reserved.
composition and decreased the health of aquatic communities
within the river basin (Ouyang et al., 2006). With an increased
understanding of the important of drinking water quality to public
health and raw water quality to aquatic life, there is a great need to
assess water quality (Ouyang, 2005).

The evaluation of water quality in most countries has become
a critical issue in recent years; especially because of concerns that
freshwater will be a scarce resource in the future (Varol et al., 2011).
However, there is a certain difficulty to interpret a huge and
complex data matrix comprised of a large number of physico-
chemical parameters form long-term monitoring programs
(Bengraine and Marthaba, 2003; Singh et al., 2004; Koklu et al.,
2010). Surface waters are most vulnerable to pollution due to
their easy accessibility for disposal of wastewaters (Singh et al.,
2004). The water quality of river at any point can reflected
several major influences, including the lithology of the basin,
atmospheric inputs, climatic conditions and anthropogenic inputs
(Bricker and Jones, 1995), as well as interactions between several
factors (Bengraine and Marthaba, 2003).
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Fig. 1. Location of the Xiangxi River watershed in China and the distribution of
sampling sites.
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The multivariate statistical techniques, such as cluster analysis
(CA), principal component analysis (PCA), factor analysis (FA) and
discriminant analysis (DA) has widely been used to interpret water
quality data in the identification of possible factors/source that
influence water systems and offer a valuable tool for reliable
management of water resource (Singh et al., 2004; Zeng and
Rasmussen, 2005; Ouyang et al., 2006; ; Shrestha and Kazama,
2007; Hussain et al., 2008; Kazi et al., 2009; Razmkhah et al.,
2010; Varol et al., 2011). The multivariate statistical treatment of
data also has been applied to characterize and evaluate surface and
freshwater quality and it is useful for verifying temporal and spatial
variations caused by natural and anthropogenic factors linked to
seasonality (Helena et al., 2000; Singh et al., 2004, 2005; Shrestha
and Kazama, 2007).

As the largest tributary of the Three Gorges Reservoir (TGR) in
Hubei Province, the Xiangxi River can strongly influence water
quality of the TGR (Zhou et al., 2008; Wu et al., 2009). Therefore
water quality monitoring and assessment is very important for the
management of TGR area. In the present study, a large data matrix,
obtained during a 5-year (2002e2006) monitoring program, is
subjected to different multivariate statistical techniques to: (1)
obtain information about the similarities and differences between
sampling sites, (2) identify water quality variable responsible for
spatial and temporal variations in stream water quality, and (3)
determine the influence of sources (natural and anthropogenic) on
water quality parameters of the Xiangxi River.

2. Materials and methods

2.1. Study area

Xiangxi River, located in central China, is the largest tributary of
the Three Gorges Reservoir (TGR) in Hubei Province. The Xiangxi
River originates fromMount Shennongjia (3150 m a.s.l., the highest
mountain in central China), and it discharges into the Yangtze River.
It has three main tributaries: the Jiuchong, Gufu and Gaolan River
(Fig. 1). Xiangxi River watershed has an area of 3099 km2 and
a natural fall of 1540 m from its headwaters to its confluence with
the Yangtze River (Jiang et al., 2005; Tang et al., 2006). The average
annual precipitation within this watershed is 988 mm (Cai et al.,
2010; Li et al., 2010).

Approximately 70.9% of this catchment is covered by forests,
6.5% is farmland and 5.3% is water area, 4.4% is wastelandwhilst the
remainder is residential land and transportation (Xu et al., 2010).
Forests are mainly distributed on hillsides the slope upper regions,
and have obvious changes in dominant tree species along altitu-
dinal gradients (Jiang et al., 2005). The main agricultural crops are
rice and wheat. Urban areas are mainly distributed in the middle
and lower regions of the basin near the river bank. Soils are derived
mainly from limestone soils in the upper regions and brown and
yellow-brown soils in the lowlands (Hörmann et al., 2009).

2.2. Analytical procedure

The data sets of 12 water quality monitoring sites comprising 14
physicalechemical parameters monitored monthly over 5-years
(2002e2006) (Fig. 1). A hydrolab Minisonde (Hach Environmental,
Loveland, Colorado) was used to measure in situ variables that
included pH, conductivity (Cond), and water temperature (WT) at
each site.

Surface water samples also were collected in two 380 ml
cleaned plastic containers to measure chemical variables according
to the standard methods (Huang, 1999; Cai, 2007) in the lab,
including total nitrogen (TN), ammonium (NH4eN), nitrate
(NO3eN), total phosphorus (TP), orthophosphate (PO4eP),
hardness, calcium (Ca2þ), chloride (Cl�), alkalinity (Alk), silicon
(SiO2) and chemical oxygen demand (COD).

2.3. Data treatment

The KolmogoroveSmirnov (KeS) statistics were used to test the
goodness-of-fit of the data to normal distribution. According to the
KeS test, measured water-quality parameters show non-normal
distribution. Spearman’s rank correlation coefficient was used to
assess the correlation structure between non-normal distributed
water quality parameters (Wunderlin et al., 2001). Therefore, the
temporal variations of the streamwater-quality parameters were first
evaluated through seasoneparameter correlation matrix using the
Spearman non-parametric (Spearman’s R) in this study. The water-
quality parameters were grouped in four seasons: spring
(MarcheMay), summer (JuneeAugust), autumn (Septembere
November) and winter (DecembereFebruary). Each season was
assigned to a numerical value in the datafile (spring¼ 1; summer¼ 2;
autumn¼ 3 andwinter¼ 4), which as a variable corresponding to the
seasonwas correlated (pair by pair)with all themeasured parameters.

Stream water quality data sets information was interpret by
integrating four multivariate analysis: cluster analysis (CA), prin-
cipal component analysis (PCA), factor analysis (FA) and discrimi-
nant analysis (DA) (Wunderlin et al., 2001; Singh et al., 2004;



Table 1
Loadings of experimental variables (14) on significant principal components for
spring, summer, autumn and winter data sets.

Variables VF1 VF2 VF3 VF4 VF5 VF6

Spring (six significant principal components)
NH4eN �0.013 �0.018 0.037 �0.001 0.101 0.910
NO3eN 0.331 0.821 �0.236 0.139 �0.154 0.053
TN 0.126 0.936 0.157 �0.048 �0.076 �0.006
PO4eP �0.228 0.472 0.076 �0.259 0.570 �0.239
TP 0.182 �0.107 �0.064 0.859 0.013 0.107
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Shrestha and Kazama, 2007; Hussain et al., 2008; Kazi et al., 2009;
Razmkhah et al., 2010; Varol et al., 2011). CA and PCA/FA were
applied on experimental data standardized through z-scale trans-
formation in order to avoid misclassification due to wide differ-
ences in data dimensionality (Liu et al., 2003; Simeonov et al.,
2003). DA was applied to raw data (Singh et al., 2004; Shrestha
and Kazama, 2007). All mathematical and statistical computa-
tions were made using Microsoft Office Excel 2003, SPSS 16.0 and
STATISTICA 6.
SiO2 �0.223 0.393 0.240 0.678 �0.221 �0.328
Alk 0.704 0.280 0.070 �0.142 0.118 �0.225
Hardness 0.705 0.158 0.295 0.059 0.097 0.246
Ca 0.064 0.212 0.725 �0.185 �0.108 0.395
Cl 0.078 �0.112 0.860 0.077 0.042 �0.143
COD �0.435 0.029 �0.139 0.414 0.153 �0.064
WT 0.059 0.098 0.193 0.094 L0.851 �0.151
Cond 0.867 0.008 �0.149 0.189 �0.137 �0.008
pH 0.135 �0.211 0.191 0.237 0.540 0.051
Eigenvalue 2.23 2.15 1.62 1.62 1.51 1.32
％Total variance 19.81 13.78 12.53 11.10 9.45 8.02
Cumulative %variance 19.81 33.60 46.13 57.22 66.67 74.70
Summer (five significant principal components)
NH4eN �0.055 0.809 �0.050 �0.198 0.177
NO3eN 0.863 0.035 0.231 0.120 0.082
TN 0.841 �0.044 �0.067 �0.009 �0.240
PO4eP 0.231 0.583 �0.190 0.170 �0.290
TP 0.034 0.748 �0.111 �0.079 �0.152
SiO2 0.649 �0.211 0.154 �0.141 0.536
Alk �0.053 �0.214 0.787 �0.196 �0.124
Hardness 0.134 �0.024 0.844 0.153 0.088
Ca �0.284 0.005 0.172 0.706 0.329
Cl �0.013 0.121 �0.044 L0.773 0.098
COD �0.360 0.766 0.073 �0.071 0.185
WT �0.068 0.035 �0.021 0.044 0.853
Cond 0.465 0.020 0.616 0.082 0.466
pH 0.309 �0.081 �0.202 0.627 �0.045
Eigenvalue 2.48 2.26 1.92 1.67 1.61
％Total variance 22.31 14.76 14.04 11.56 8.36
Cumulative %variance 22.31 37.07 51.10 62.66 71.02
Autumn (six significant principal components)
3. Results and discussion

3.1. Spatial similarity and site grouping

Cluster analysis yielded a dendrogram (Fig. 2), grouping all 12
sampling sites of the basin into three statistically significant clus-
ters at Dlink/Dmax � 100 < 60. The clustering procedure generated
three groups are very meaningful, as the sites in these groups have
similar characteristic features and natural background source types.
Cluster 1 (GF04, GL03 and GL02), cluster 2 (JC02, JC03, XX14 and
XX17) and cluster 3 (JC08, JC09, XX21 and XX23) correspond to high
pollution lower catchments region (LS), moderate pollution middle
catchments region (MS) and low pollution upper catchments
region (US), respectively. The sites of Cluster 1 are located at the
downstream of the urban area, may affected by point source
discharges of sewage as well as the pollution from phosphorus
industry. Cluster 2 and Cluster 3 sites are respectively located in an
agricultural dominated region and forest dominated region. Many
previous studies demonstrated the pattern of good water quality in
forest areas and high concentrations of nitrogen in agricultural
areas (Allan, 2004). It indicates that CA technique is useful to make
reliable classification of steam water quality in the whole region
and help to develop future spatial sampling strategy in an optimal
manner.
NH4eN �0.118 �0.064 0.597 �0.323 0.484 0.074
NO3eN 0.907 �0.060 0.049 0.131 �0.081 0.159
TN 0.916 �0.052 �0.154 �0.014 0.011 0.082
PO4eP �0.021 �0.127 0.147 0.463 0.521 �0.246
TP 0.041 0.053 0.010 0.010 0.770 0.203
SiO2 0.083 0.206 �0.046 0.888 0.053 0.070
Alk 0.336 �0.018 0.434 �0.063 �0.578 0.191
Hardness 0.105 0.868 �0.067 0.049 �0.177 �0.081
Ca 0.342 L0.797 �0.019 �0.002 �0.033 0.173
Cl 0.566 �0.137 0.331 �0.267 �0.092 �0.479
COD 0.193 �0.088 �0.027 �0.001 0.056 0.868
WT 0.034 �0.029 0.757 0.042 �0.035 �0.150
Cond �0.135 0.002 0.684 0.598 �0.077 0.083
3.2. Data structure determination and source identification

KaisereMeyereOlkin (KMO) and Bartlett’s test were needed to
examine the suitability of the data for PCA/FA before analysis. KMO
is a measure of sampling adequacy that indicates the proportion of
variance which is common variance. High value (close to 1)
generally indicates that PCA/FA may be useful. In this study,
KMO¼ 0.494. Bartlett’s test indicates whether correlationmatrix in
is an identity matrix or not, which indicates that variables are
Fig. 2. Dendrogram showing clustering of sampling sites on the Xiangxi river
according to water quality characteristic.

pH �0.025 0.739 �0.022 0.124 0.132 0.142
Eigenvalue 2.30 2.03 1.75 1.58 1.51 1.25
％Total variance 19.38 14.26 13.34 11.57 8.35 7.57
Cumulative %variance 19.38 33.64 46.99 58.55 66.90 74.47
Winter (five significant principal components)
NH4eN 0.794 0.062 0.006 �0.359 �0.204
NO3eN 0.065 0.149 0.531 0.640 0.173
TN 0.756 0.133 0.171 0.285 0.149
PO4eP �0.118 0.943 0.088 0.066 �0.060
TP 0.240 0.929 0.024 �0.011 0.024
SiO2 0.803 0.039 �0.048 0.336 0.125
Alk �0.210 0.070 0.897 0.007 �0.039
Hardness 0.365 �0.028 0.805 �0.001 0.054
Ca 0.298 0.320 0.017 �0.237 0.520
Cl �0.150 �0.352 0.106 �0.016 0.369
COD 0.002 0.103 0.178 L0.762 �0.014
WT 0.263 �0.176 0.343 �0.070 0.510
Cond 0.400 0.169 0.215 0.690 �0.062
pH �0.116 �0.033 �0.169 0.332 0.681
Eigenvalue 2.45 2.10 2.01 1.97 1.25
％Total variance 23.12 14.49 12.46 11.94 7.84
Cumulative %variance 23.12 37.61 50.08 62.02 69.86

Bold and italic values indicate strong and moderate loadings, respectively.
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unrelated. The significance level which is 0 in this study (less than
0.05) indicates that there are significant relationships among
variables, and suitable for PCA/FA. The principal component anal-
ysis results were compared for the whole normalized data,
normalized data sets separately for the three regions and normal-
ized data sets separately for the four seasons. The PCA result was
best performed on normalized data sets separately for the four
seasons. PCA of the four data sets yielded six PCs for spring and
autumn and five PCs for summer and winter with eigenvalues >1,
explaining 74.70%, 74.47%, 71.02% and 69.86% of the total variance
in respective water quality data sets. Equal numbers of VFs were
obtained for four seasons through FA performed on the PCs. PCA/FA
were widely used to assess spatial and temporal variation in water
quality (Singh et al., 2004). Liu et al. (2003) classified the factor
loadings as ‘strong’, ‘moderate’ and ‘weak’ corresponding to abso-
lute loading values of >0.75, 0.75e0.50, and 0.50e0.30,
respectively.

For the data set pertaining to spring, among six VFs (Table 1),
VF1 explaining 19.81% of total variance, has strong positive loading
on Cond andmoderate positive loading on Alk and hardness, which
can be interpreted as a mineral component of the stream water
quality. These minerals were likely from dissolution of limestone
and gypsum soils (Vega et al., 1998). VF2, explaining 13.78% vari-
ance, has strong positive loading on NO3eN and TN. The excess
nitrogen in Xiangxi River was mainly from town sewage and agri-
culture cultivation (Li et al., 2007; Ye et al., 2009). VF3 (12.53% of
total variance) has strong positive loading on Cl� and moderate
positive loading on Ca2þ. VF4 (11.10% of total variance), has strong
positive loading on TP and moderate positive loading on SiO2. VF5
(9.45% of total variance) has strong negative loading on WT and
moderate positive loading on PO4eP. VF3, VF4 and VF5 represent
mineral and nutrition component. Water temperature in natural
can strong impact on dissolution of limestone and gypsum soils,
also have strong relationship with the dissolution and inversion of
phosphorus. The phosphorus reserves in the Xiangxi River basin is
among the top three in China, reach 357 million tons (Li et al.,
2008). The phosphorite and phosphate plant were the point sour-
ces polluted the Xiangxi River. VF6 explaining 8.02% of the total
variance, has strong positive loading on NH4eN, reflected the
nitrogen pollution of town sewage.

For the data set representing the summer, among five significant
VFs (Table 1), VF1 explains 22.31% of the total variance, has strong
Table 3
Classification matrix for discriminant analysis of temporal variation in water quality
of the Xiangxi river basin.

Monitoring seasons % Correct Season assigned by DA

Spring Summer Autumn Winter

Standard DA mode
Spring 64.2 70 3 15 21
Summer 83.9 5 94 13 0
Autumn 56.0 14 21 56 9
Winter 87.9 11 0 5 116
Total 74.2 100 118 89 146
Forward stepwise DA mode
Spring 64.2 70 3 14 22
Summer 84.2 6 96 12 0
Autumn 57.0 14 20 57 9
Winter 85.6 14 0 5 113
Total 73.8 104 119 88 144
Backward stepwise DA mode
Spring 56.4 66 4 17 30
Summer 80.5 10 99 14 0
Autumn 51.5 20 19 52 10
Winter 88.1 11 0 5 118
Total 70.5 107 122 88 158
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positive loading on NO3eN and TN, moderate positive loading on
SiO2. VF2 (14.76% of total variance) has strong positive loading on
NH4eN and COD and moderate positive loading on PO4eP and TP.
VF1 and VF2 represent the anthropogenic pollution sources and can
be explained that the high precipitation in summer make the no-
point pollution more serious. VF3 explaining 14.04% of the total
variance, has strong positive loading on Alk and hardness and
moderate positive loading on Cond. VF4 (11.56% of total variance)
has strong negative loading on Cl� and moderate positive loading
on Ca2þ. VF5 (8.36% of total variance), has strong positive loading
on WT and moderate positive loading on SiO2. VF3, VF4 and VF5
represent the mineral component and water temperature. This can
be explained that the high precipitation in summer make more
dissolution of limestone and gypsum soils.

For the data set representing the autumn, among total six
significant VFs (Table 1), VF1 explaining 19.38% of the total vari-
ance, has strong positive loading on NO3eN and TN and moderate
positive loading on Cl�. This VF reflects the pollution of nitrogen,
Fig. 3. Temporal variations: TN, SiO2, hardness, Ca, WT and
which may be a result of agriculture harvest. VF2 explaining 14.26%
of the total variance, has strong positive loading on pH. VF3 (13.34%
of total variance) has strong positive loading on WT, and moderate
positive loading on Cond. VF4 (11.57% of total variance) has strong
positive loading on SiO2 and moderate positive loading on Cond.
VF2, VF3 and VF4 reflect the dissolution of limestone and gypsum
soils and the change of water temperature. VF5 explains 8.35% of
the total variance, has strong positive loading on TP, moderate
positive loading on PO4eP and moderate negative loading on Alk.
VF6 (7.57% of total variance) has strong positive loading on COD.
VF5 and VF6 represent influences from point source, such as
phosphorite and phosphate plant.

Lastly, for the data set pertaining to water quality in winter,
among five VFs (Table 1). VF1 explaining 23.12% of the total vari-
ance, has strong positive loading on NH4eH, TN and SiO2. VF2
(14.49% of total variance) has strong positive loading on PO4eP and
TP. VF3 (12.46% of total variance) has strong positive loading on Alk
and hardness, and moderate positive loading on NO3eN. VF4
pH in surface water quality of the Xiangxi river basin.



Table 4
Classification functions (Eq. (3)) for discriminant analysis of spatial variation in water quality of the Xiangxi river basin.

Parameters Standard mode Forward stepwise mode Backward stepwise mode

LSb MSc USd LSb MSc USd LSb MSc USd

Coefficienta Coefficienta Coefficienta Coefficienta Coefficienta Coefficienta Coefficienta Coefficienta Coefficienta

NH4eN 23.701 24.009 21.646
NO3eN 4.885 1.856 0.224 5.401 2.304 0.791 8.132 5.310 4.042
TN �0.907 �0.665 �0.294 0.307 0.620 0.925
PO4eP 5.472 6.404 8.050 �0.613 0.351 2.019
TP 22.615 22.968 19.172 19.912 20.077 15.854
SiO2 0.962 0.801 0.609 1.667 1.503 1.320
Alk 0.336 0.318 0.294 0.293 0.273 0.250 0.264 0.246 0.226
Hardness 0.492 0.457 0.389 0.676 0.654 0.583
Ca 0.389 0.370 0.377
Cl 1.044 0.960 0.835 0.844 0.761 0.632
COD 1.528 1.288 1.203 1.488 1.249 1.144
WT 1.617 1.574 1.510 0.769 0.729 0.661
Cond �0.006 �0.010 �0.009 0.010 0.007 0.007
pH 22.988 23.169 23.235
Constant �154.54 �146.29 �140.40 �46.78 �37.64 �31.10 �26.34 �20.61 �17.49

a Discriminant function coefficient for spring, summer, autumn and winter seasons correspond to wij as defined in Eq. (1).
b Lower catchments includes sites (GF04, GL03 and GL02).
c Middle catchments includes sites (JC02, JC03, XX14 and XX17).
d Upper catchments includes sites (JC08, JC09, XX21 and XX23).
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(11.94% of total variance) has strong negative loading on COD and
moderate positive loading on NO3eN and Cond. VF1 and VF3 reflect
the mineral component and nitrogen pollution in the streamwater
quality. VF2 and VF4 reflect the nutrition pollution of phosphorus
and nitrogen. VF5 explaining 7.84% of the total variance, has
moderate positive loading on Ca2þ, WT and pH, reflect the disso-
lution of limestone and gypsum soils.
3.3. Temporal and spatial variations in stream water quality

The temporal variations in stream water quality parameters
were evaluated through a seasoneparameter correlation matrix.
The result showed that 10 parameters were found to be signifi-
cantly (p < 0.01) correlated with season, while 4 parameters were
found to be not significantly (p > 0.05) correlated with season. The
all seasoneparameter correlation coefficients were generally low.
Among these, WT exhibited highest correlation coefficient (Spear-
man’s R ¼ �0.40) followed by Ca2þ (Spearman’s R ¼ 0.33) and
Table 5
Classification matrix for discriminant analysis of spatial variation in water quality of
the Xiangxi river basin.

Monitoring regions % Correct Season assigned by DA

LSa MSb USc

Standard DA mode
LS 41.2 42 53 7
MS 73.2 19 150 36
US 58.9 3 57 86
Total 61.4 64 260 129
Forward stepwise DA mode
LS 41.7 48 60 7
MS 74.5 18 172 41
US 54.8 4 71 91
Total 60.7 70 303 139
Backward stepwise DA mode
LS 31.6 43 91 2
MS 76.7 23 217 43
US 43.4 8 108 89
Total 55.9 74 416 134

a Lower catchments includes sites (GF04, GL03 and GL02).
b Middle catchments includes sites (JC02, JC03, XX14 and XX17).
c Upper catchments includes sites (JC08, JC09, XX21 and XX23).
hardness (Spearman’s R ¼ 0.32). The season-correlated parameters
can be taken as representing the major source of temporal vari-
ances in water quality (Singh et al., 2004; Shrestha and Kazama,
2007). Wide seasonal variations in water temperature and stream
discharge can be attributed to the high seasonality in various water
quality parameters (Singh et al., 2004; Shrestha and Kazama, 2007).
The non-significant correlation of NH4eN, TN, Cl� and Cond with
season indicates the contribution of anthropogenic sources in the
catchment areas.

Temporal variations in water quality were further evaluated
through DA. Temporal DA was performed on raw data of four
seasons (spring, summer, autumn and winter). Discriminant func-
tions (DFs) and classification matrices (CMs) obtained from the
standard, forward stepwise and backward stepwise mode are
shown in Tables 2 and 3. The standard DA mode, constructed DFs
including 14 parameters, yielded the corresponding CMs assigning
74.2% of the cases correctly (Tables 2 and 3). Both the standard and
forward stepwise mode DFs using 13 and 6 discriminant variables,
respectively, rendered the corresponding CMs assigning 74% cases
correctly (Tables 2 and 3). However, in backward stepwise mode DA
gave CMs with 70.5% correct assignations using only six discrimi-
nant parameters with a litter different match for each season
compared with the forward stepwise mode. Thus, the temporal DA
results suggested that TN, SiO2, hardness, Ca2þ, WT and pH are the
most significant parameters to discriminate between the four
seasons, whichmeans that these six parameters account formost of
the expected temporal variations in the stream water quality.

As identified byDA (back stepwisemode), box andwhisker plots
of the selected parameters showing seasonal trends are given in
Fig. 3. The variation of water temperature shows a clear-cut
seasonal effect. The average concentration of TN is high in
summer can be explained that high precipitation in summer make
the anthropogenic non-point pollution in to stream water body
serious. The average concentration of Ca2þ and hardness due to
dissolution of limestone and gypsum soils were low in summer,
suggested it has negative relationship with high precipitation. The
average pH and SiO2 concentration have the similar trend.

Spatial DA was performed with the same raw data set
comprising 14 parameters after grouping into three regions of LS,
MS and US obtained through CA. DFs and CMs obtained frommodes
are shown in Tables 4 and 5. Similarly to temporal DA, the standard



Fig. 4. Spatial variations: NO3eN and Alk in surface water quality of the Xiangxi river basin.
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mode, constructed DFs including 14 parameters, yielded the cor-
responding CMs assigning 61.4% of the cases correctly. The forward
and backward stepwise mode used 11 and 2 discriminant variables,
yielded the corresponding CMs assigning 60.7% and 55.9% cases
correctly, respectively. Back stepwise mode shows that NO3eN and
Alk are the discriminating parameters in space.

According to the spatial DA (Back stepwise mode), box and
whisker plots of discriminating parameters were constructed to
evaluate different patterns associated with spatial variations in
stream water quality (Fig. 4). The concentration of NO3eN was
increased from upstream region to downstream region. Ye et al.
(2009) suggested that the agriculture sub-watershed has high
concentration of NO3eN and Alk and the forest dominated region
has low concentration of most nutrient variables in Xiangxi basin.
The case correctly of DA was low due to the high deviation within
groups suggested that there have point pollution source of
nitrogen. The high deviations within groups also have relationship
with temporal pattern of the anthropogenic non-point pollution of
nitrogen in Xiangxi River basin. There are many small hydropower
station in Xiangxi River basin (Wu et al., 2010), but it did not affect
any water-chemistry variables (Wu et al., 2009). The average Alk
concentration has the similar trend to the average NO3eN
concentration.
4. Conclusions

With the concerns of river water quality in recent years, it was
required to develop wide range multivariate statistical techniques
to analyze and interpret underlying water quality information. In
this study, multivariate statistical techniques, including Cluster
Analysis (CA), Principal Component Analysis (PCA), Factor Analysis
(FA) and Discriminant Analysis (DA), had been integrated for the
assessment, restoration, and protection of local and region water
quality. CA grouped 12 sampling sites into three clusters of similar
water quality characteristics, whichmay be a result of different land
use. This study suggested that good water quality in forested area
and high concentrations of nitrogen in agricultural areas. Extracted
grouping information can be used in reducing sampling sites
without losing much information. Although the PCA/FA did not
resulted in a significant data reduction at four seasons, the VFs
obtained from the PCs suggested that the parameters responsible
for water quality variations are mainly related to the dilution of salt
(natural), the point source pollution of phosphorus and the pollu-
tion of nitrogen (agriculture cultivation in spring, harvest in
autumn and town sewage). Discriminant analysis provided an
important data reduction. For four seasons of the basin, it yielded
good data reduction, as it used six parameters (TN, SiO2, hardness,
Ca2þ, WT and pH), affording 70.5% correct assignations. For three
different sampling regions, it yielded two parameters (NO3eN and
Alk), affording 55.9% correct assignations. The low correct assig-
nations in spatial analysis suggested the anthropogenic influence of
agriculture cultivation in spring and harvest in autumn. Thus,
future watershed management activities should consider the effect
of land use as well as the point pollution from the phosphorus
industry.
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