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Abstract The ecological effects of small run-of-river

dams on aquatic ecosystems are poorly understood, espe-

cially on downstream benthic algal communities. We

examined impacts of such dams on the benthic diatom

community at a regional scale in the Xiangxi River, China.

A total of 90 sites were visited, which were divided into

five habitats (H1–H5) according to impact extent of each

dam. Using partial least squares (PLS) modeling, we

developed two predictive models (diatom species richness

and total diatom density) based on environmental variables

of an unregulated habitat (H1). These models were then

used to predict species richness and total densities at

impacted habitats (H2–H5) and residuals, i.e. the differ-

ences between observed and predicted values, were used to

evaluate impact strength of flow regulation. Significant

impacts of flow regulation on diatom species richness were

detected at three impacted habitats (H3–H5), where

observed species richness were significantly higher—70.6,

63.9 and 46.6%, respectively—than predicted values.

Then, possible mechanisms for observed impacts were

discussed. Further research is necessary to address the

potential negative impacts of cascade run-of-river dams on

other aquatic organisms in different seasons, and to explore

more appropriate mechanisms for such impacts, which may

lead to sustainable management strategies and help to

determine the optimal ecological water requirement for the

Xiangxi River.

Keywords Benthic diatoms � Cascade run-of-river dams �
PLS models � Xiangxi River

Introduction

Damming is probably one of the greatest stressors affecting

the integrity of running waters (Heinz Center 2002; Garcia

de Leaniz 2008), because it can interfere or even stop the

transport of sediment and nutrients along waterways and

eventually disturb ecological connectivity, which under-

pins the transfer of materials and products of ecological

functions and processes (Jenkins and Boulton 2003).

Additionally, impounded waters can trigger important

changes in the composition of stream fauna, favoring lentic

over lotic species (Raymond 1979; Lewis 2001; Shao et al.

2007; Zhou et al. 2007). However, the effects of small run-

of-river dams on aquatic ecosystems are poorly understood.

Benthic assemblages and plankton communities in down-

stream habitats might be strongly influenced by such dams,

but only a few studies have examined the responses of

fish, macroinvertebrates, zooplankton, phytoplankton and

stream chemistry to such small dams (Almodóvar and

Nicola 1999; Stanley et al. 2002; Thomson et al. 2005;

Velinsky et al. 2006; Wu et al. 2007; Fu et al. 2008; Zhou

et al. 2008). To our knowledge, even fewer studies have

evaluated the responses of benthic algae to the construction

of small run-of-river dams (Wu et al. 2009).
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As important primary producers in stream ecosystems,

benthic algae are ubiquitous and sensitive to a broad range

of stressors (Hambrook 2002). It has been widely reported

that distribution patterns of benthic algae are strongly

correlated with environmental factors, including geomor-

phic characteristics (Leland and Porter 2000), eco-climate

(Weckström and Korhola 2001), hydrological regime, land

use in the watershed (Leland and Porter 2000), instream

nutrients such as N and P (Millie et al. 2002; Tang et al.

2002), and prey pressure (Anderson et al. 1999). Therefore,

diatoms, the algal division predominant within periphyton

of the Xiangxi River system (Tang et al. 2002, 2004; Wu

et al. 2009), are increasingly being used as bio-indicators

for environmental monitoring in Europe, North America,

and elsewhere (Stevenson and Smol 2002).

The Xiangxi River, with a length of 94 km and a

catchment area of 3,099 km2, is the largest tributary near

the Three-Gorge Dam (TGD) in Hubei province. Never-

theless, over 47 run-of-river dams have been built within

the watershed due to a high natural gradient (*1,540 m

from the headwaters to its confluence with the Yangtze

River; Tang et al. 2006), and a series of small cascade

dams has become one of the main human disturbances.

Former studies on the Xiangxi River suggested that the

effect of the dams varied with time, but was more pro-

nounced in dry seasons or during long periods of drought

(Zhou et al. 2008). We investigated 23 dams during the

dry season (October 2005) within the Xiangxi River

watershed, and estimated impacts of cascade run-of-river

dams on the benthic algae community. Our specific aim

was to detect downstream effects of cascade run-of-river

dams on benthic diatom communities and explain possible

mechanisms.

Methods

Study area and site locations

Originating from Shennongjia Mountain (at 3,150 m, the

highest mountain in central China), the Xiangxi River has

three main tributaries—Jiuchong, Gufu, and Gaolan Rivers

(Fig. 1b) (Tang et al. 2006). Many small, run-of-river dams

have been constructed along this river, and in dry seasons

much of the flow is abstracted and diverted through a

special penstock to power plants, leaving the main channel

with only a small part of the original flow.

We investigated 23 dams in October 2005, and at most,

five sites (S1–S5) were established at each river segment

(Fig. 1c). S1 was located approximately 50–100 m

upstream of the dam where river channels were in a

completely natural state, free of impacts from the dam. S2

was just upstream from the dam and slightly influenced by

the intake dam. S3 was in a pool below the dam, which was

formed by overflow erosion in rainy seasons, and no

velocity was detected during the sampling period. S4 was

upriver from the outlet of the small hydropower station

(SHP), and flow was recovered after water gathering

downstream from S3. S5 was at the outlet of the SHP,

where powerful currents discharging from the outlet have

formed a deep pool. We sampled mainly in this area,

despite its small size. Due to cascade construction of dams,

sampling sites at upstream SHPs usually overlapped with

the site of an adjacent dam, meaning a total of 90 sites were

finally visited, which were divided into five habitats (H1–

H5) according to impact extent of each dam. H1 (20 sites)

comprised unregulated sites including all of S1; S2–S5

were made up of H2–H5 (19, 21, 15 and 15 sites, respec-

tively), separately.

Field sampling and identification

Algae were collected from all available substrates and

habitats. The objective was to collect a single composite

sample that represented the benthic algae community in

the reach. Three to five representative stones (diame-

ter \ 25 cm) were collected from each section, and the

surface area within a 2.7-cm diameter corer was brushed

thoroughly and then rinsed with 350-ml distilled water. The

sample was divided into two parts: one was preserved with

4% formalin for identification and the other was filtered

through a Whatman GF/C filter for chlorophyll a (Chl a)

measurement. In the laboratory, Chl a was determined

spectrophotometrically following acetone extraction

according to APHA (1992).

Identification of benthic algae involved two steps. First,

we analyzed non-diatom algae with a 0.1-mL counting

chamber and a microscope at 4009 magnification. Second,

we prepared permanent diatom slides after oxidizing the

organic material with acid. We counted a minimum of 300

valves at 1,0009 magnification under oil immersion. We

identified algae to the lowest taxonomic level possible with

keys in Anonymous (1992); Hu et al. (1980); Zhang and

Huang (1991); and Zhu and Chen (2000). The densities of

benthic algae were expressed as ind m-2.

Measurement of physicochemical factors

Values of pH, dissolved oxygen (DO), conductivity

(COND), Chloride (Cl), total dissolved solid (TDS), water

temperature (WT), oxidation reduction potential (ORP) and

turbidity (TURB) were measured in situ with a Horiba

W-23XD (multiprobe sonde). Water depth, channel width

and current velocity (LJD-10 water current meter; Chon-

gqing hydrological machines manufactory, Chongqing,

China) were also measured at each site.
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We collected *1 L of water in pre-cleaned plastic

containers to measure chemical variables, including total

phosphorus (T-P) and PO4–P, in the laboratory, according

to standard methods, soon after sampling (Chinese Envi-

ronmental Protection Bureau 1989).

Modeling and statistical analysis

According to Wang et al. (2005) and van Dam et al. (1994),

we first calculated as many diatom indices as possible

(pollution-tolerance index, species richness, total density,

Margalef diversity, Pielou evenness, Shannon–Wiener

diversity and five growth forms) based on diatom abun-

dances at each site. Together with Chl a, 12 indices were

calculated in total.

Partial least squares regression (PLS) was used to build

predictive models for these indices. PLS modeling com-

bines ordination and regression, and its detailed

introduction has been described by ter Braak and Juggins

(1993); Eriksson et al. (1995); Wold (1995); Englund et al.

(1997) and Zhang et al. (1998).

In our study, PLS modeling was performed using the

software SIMCA-P 11.5 for Windows. We began by

building PLS models to describe how diatom indices at

unregulated sites were related to environmental variables.

Cross validation was used to assess the significance of each

PLS model. Squared predictive residuals called PRESS

(predicted residual sum of squares) were first summed, and

this procedure was repeated until each group had been left

out once. Second, all partial PRESS values were summed

to form a total PRESS, which is a measure of the predictive

capability of a component of the PLS model. This total

PRESS was then compared to the residual sum of squares

(SS). A component (model dimension) was considered

significant if the ratio (PRESS/SS) was statistically smaller

than 1.0. Lastly, Q2 (the cross-validated variance) was

calculated (1 - PRESS/SS) and for a significant model or

a component, Q2 should be larger than a critical value (in

our study, Q2
limit = 0.05, corresponding to P \ 0.05).

We then, modified the models by excluding variables

directly affected by flow regulation. From these new models,

we predicted diatom indices at impacted sites. The residuals,

i.e. the difference between values observed and those pre-

dicted from the models, were used to estimate the impacts of

flow regulation. Effects were calculated using [(observed

value - predicted value)/predicted value] 9 100. In

accordance with Englund et al. (1997) and Zhang et al.

(1998), an impact of flow regulation was regarded as sig-

nificant if 95% confidence intervals for the means of effects

did not include zero, corresponding to P \ 0.05.

Results

Algal species richness and environmental variables

Benthic algae sampling yielded 146 taxa (mostly at species

levels), belonging to Bacillariophyta, Chlorophyta and

Cyanophyta. Main genera of non-diatom algae, whose

average density in all sites was 1.45 9 109 ind m-2, were

Oscillatoria, Phormidium, Stigonema, Ulothrix and Uro-

nema. In all samples, the largest number of species

belonged to Bacillariophyta (79.4% of the total taxa), as

was similarly the case in other studies of benthic algae in

the Xiangxi River (Tang et al. 2002, 2004; Wu et al. 2009).

We therefore focused on diatoms in subsequent analyses.

Rossithidium linearis and Cocconeis placentula were the

most abundant species; their relative abundances were 48.5

Fig. 1 Small run-of-river dams

within the Xiangxi River

watershed (b) in the People’s

Republic (P. R.) of China (a)

and sketch map of sampling

sites (c). SHP Small

hydropower station; letters in

b are names of SHPs
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and 8.1%, respectively. The average diatom density at all

sites taken together was 5.57 9 109 ind m-2 and mean

species richness at all 90 sites was 18.3, ranging from 4 to

41 (Table 1).

The 15 environmental variables from all 90 sites and 5

habitat groups are summarized in Table 2. Of all physi-

cochemical variables, current velocity differed most

significantly among the five groups (ANOVA, P \ 0.05).

From H1 to H3, flow velocity declined from 0.74 to

0 m s-1 while remaining constant at H4 and H5 (0.58 and

0.46 m s-1, respectively).

Effects of flow regulation on diatom indices

Significant models were developed for species richness and

total density, out of 12 indices. An analysis of species

richness at unregulated sites (H1), with respect to 15

environmental variables, yielded two significant compo-

nents (Qcum
2 = 0.38). A similar analysis for total diatom

density produced one significant component (Q2 = 0.12)

(Table 3). Two models indicated that channel width, flow

velocity, pH, WT and SAL were important for both species

richness and total density (Fig. 2).

To estimate the effects of flow regulation, we built new

PLS models for diatom species richness and total diatom

density based on H1, excluding flow velocity, which was

assumed to be directly influenced by flow regulation. Two

significant components were extracted for diatom species

richness (Qcum
2 = 0.26) and one for total diatom density

(Q2 = 0.06) (Table 3). These models were then used to

predict species richness and total density at four other

habitats (H2–H5). At H3, H4 and H5, the respective,

observed species richness values of 70.6, 63.9 and 46.6%

were significantly higher than predicted values, while at

H2, the effect did not differ significantly from zero

(Figs. 3, 5a). Figure 4 shows the predicted versus observed

values of total diatom density at four different habitat

groups (H2–H5). We found that for H3, H4 and H5, but not

H2, most observed total densities were higher than pre-

dicted values. Nevertheless, the effects observed at H2–H5

Table 1 Mean and range of diatom species richness and total diatom

density at all sites and each habitat group

Sites n Richness

(range)

Total density

(9109 ind m-2) (range)

All sites 90 18.3 (5 to 41) 5.57 (0.04 to 32.75)

H1 20 14.6 (9 to 30) 2.58 (0.04 to 14.73)

H2 19 15.7 (8 to 40) 3.30 (0.13 to 18.40)

H3 21 22.0 (11 to 41) 8.96 (0.77 to 32.75)

H4 15 18.3 (5 to 29) 5.23 (0.25 to 10.76)

H5 15 21.3 (13 to 33) 8.03 (0.30 to 18.38)
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did not differ from zero (Fig. 5b), indicating no significant

effect of flow regulation on total diatom density.

Discussion

Effects of flow disturbance

The establishment of cascade run-of-river dams caused

habitats of the lower reach (H3) to have a significantly

lower flow velocity, resulting in a potential change of many

parameters. Flow velocity is one of the most significant

factors impacting the development of aquatic organisms,

particularly periphyton (Sand-Jensen et al. 1988; Chételat

et al. 1999). As a main factor of hydrological regime,

current velocity affects species composition, succession of

species colonization, physiology of organisms, as well as

periphyton metabolism (Biggs 1996). In our study, we

investigated potential impacts of flow regulation on benthic

algal indices and found strong evidence for such effects.

Observed species richness at H3, H4 and H5 were signif-

icantly higher—70.6, 63.9 and 46.6%, respectively—than

predicted values, although no significant effect of flow

regulation at H2 was observed.

Diatom species richness is used commonly in bio-

assessments (Wang et al. 2005; Wu et al. 2009). The

impacts of a disturbance on diatom species richness are

unpredictable and depend on the type of stressors involved

(Stevenson 1984). Thomson et al. (2005) indicated that

diatom species richness in downstream reaches declined

significantly following complete removal of a small run-of-

river dam in Manatawny, Pennsylvania, while Wu et al.

(2009) found that diatom species richness decreased at

downstream sites following dam construction in a tributary

of the Xiangxi River, China. Nevertheless, observed dia-

tom species richness in our study at impacted sites (H3, H4

and H5) was significantly higher than predicted values.

These different responses to flow regulations may be

explained by disturbance pattern (dam removal, flow

increasing vs. dam construction, flow decreasing) and total

installed capacity of SHP, which determines the proportion

of flow left in the waterway.

The absence of dam impacts at H2 was probably related

to dam size and impoundment residence time (Velinsky

et al. 2006). Water residence time, determined mostly by

dam size, is a useful system-level index that has similar

ecological implications for rivers, lakes and reservoirs

(Soballe and Kimmel 1987). Where water has a long res-

idence time, uptake of elements by aquatic organisms or

populations could have significant effects on water-quality

(Kurunc et al. 2006), which may significantly influence the

benthic algal community. However, the dams in our study

are run-of-river structures with a relatively small

impoundment area, and water flows directly into the intake

weirs with a very low residence time.

Possible mechanisms for observed impacts

Predictive models have been used to estimate the magni-

tude of effects of dams on invertebrate, net-spinning caddis

larvae, and blackfly larvae (e.g. Armitage et al. 1987;

Englund et al. 1997; Zhang et al. 1998). Here we take one

step further and try to elucidate the mechanism causing

observed impacts, a necessary step since hydropower

plants and dams affect the environment in many different

ways. For example, effects on benthic algal communities

Table 3 Fractions of variance explained and fractions of variation of dependent variables predicted by PLS models for diatom species richness

and total diatom density at unregulated sites (H1)

PLS models With 15 environmental variables Excluding flow velocity

Rx
2 Ry

2 Qy
2 Rx

2 Ry
2 Qy

2

Diatom species richness 0.45 0.64 0.38 0.45 0.56 0.26

Total diatom density 0.24 0.26 0.12 0.26 0.20 0.06

Rx
2 is the fraction of the variance of all the independent variables and Ry

2 of all the dependent variables explained by the model. Qy
2 is the fraction

of the total variation of the dependent variable that can be predicted by the model, as estimated by cross-validation

Fig. 2 Loadings for the most influential variables in PLS regression

models of (a) diatom species richness and (b) total diatom density
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have been ascribed to changes in flow variability and

particle sizes of bed sediments (Wu et al. 2009). Impacts on

hydropsychids have been attributed to changes in temper-

ature, food availability, substratum stability and flow

variability (Parker and Voshell 1983; Boon 1993; Camargo

1993). Only when key mechanisms have been identified

can we suggest cost-effective remedial measures (Englund

et al. 1997).

One possible mechanism was biotic interactions

(Fig. 6). In the Xiangxi River, biomass and density of

benthic macroinvertebrates at impacted sites were lower

than those of unregulated sites (Fu et al. 2008), although no

influence of flow regulation on benthic rotifer and total

zooplankton density (Zhou et al., unpublished data) was

observed. We suggested that the underlying mechanism

could be a negative effect of flow regulation on density and

Fig. 3 Predicted versus

observed values of diatom

species richness at four different

habitat groups (H2–H5). The

predicted values were estimated

with PLS models based on data

from unregulated sites (H1)

Fig. 4 Predicted versus

observed values of total diatom

densities at four different habitat

groups (H2–H5). The predicted

values were estimated with PLS

models based on data from

unregulated sites (H1)
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biomass of grazers, which increased diatom species rich-

ness under more benign conditions. Several studies have

shown that herbivorous zooplankton and macroinverte-

brates can reduce diatom species richness. Koetsier (2005)

investigated the effects of top predator manipulations on

the community structure of benthic diatoms in a small

stream ecosystem, and demonstrated that top predators can

alter the community composition and structure of benthic

diatoms indirectly through grazer suppression and directly

by disruption due to foraging activity. McCauley and

Briand (1979) found that lowering herbivorous zooplank-

ton levels may cause an intensification of exploitative

competition among phytoplankton, which favors edible

species and a few inedible algae like Synedra.

Another potential reason was that river water down-

stream of the dams was relatively shallow due to water

abstraction, and habitat was thus relatively stable and

conducive to algal growth (Tang et al. 2004). Wu et al.

(2009) suggested that changes in algae-based metrics

downstream of dams probably reflect frequent hydraulic

disturbances after dam construction, because sediments

deliberately or accidentally released from reservoirs can

cause pronounced reductions in benthic densities and

diversity (Gray and Ward 1982; Marchant 1989). Never-

theless, there was almost no hydraulic disturbance during

the dry seasons in the Xiangxi River because the entire

flow was abstracted for hydroelectric power generation.

Moreover, shallow depths downstream of the dams could

translate into stream differences in light availability, which

may substantially influence the photosynthesis of the ben-

thic diatom community. Therefore, we hypothesized that

habitat changes created by flow reduction also played an

important role in increasing diatom species richness

(Fig. 6).

In conclusion, a combination of biotic interactions and

habitat changes may explain why diatom species richness

was positively affected by flow regulation. However, other

possible mechanisms for observed effects may exist, and

the influences we observed might increase, decrease, or

remain unchanged with time. Thus further research is

necessary to address the potential negative impacts of

cascade run-of-river dams in different seasons, and explore

more appropriate mechanisms for such influences, which

may lead to sustainable management strategies for the

Xiangxi River. Furthermore, it is strongly warranted to

continue this research on other aquatic organisms (fish,

macroinvertebrate, phytoplankton and zooplankton) and

explore the negative impacts of cascade run-of-river dams,

which would help to determine the optimal ecological

water requirement for the Xiangxi River.
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