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s u m m a r y

Spatial rainfall is a key input to distributed hydrological models, and its precisions heavily affect the accu-
racy of stream flow predictions from a hydrological model. Traditional interpolation techniques which
obtain the spatial rainfall distribution from rain gauge data have some limitations caused by data scarcity
and bad quality, especially in developing countries or remote locations. Satellite-based precipitation
products are expected to offer an alternative to ground-based rainfall estimates in the present and the
foreseeable future. For this purpose, the quality and usefulness of satellite-based precipitation products
need to be evaluated. The present study compares the difference of Tropical Rainfall Measuring Mission
(TRMM) rainfall with rain gauges data at different time scales and evaluates the usefulness of the TRMM
rainfall for hydrological processes simulation and water balance analysis at the Xinjiang catchment,
located in the lower reaches of the Yangtze River in China. The results show at daily time step TRMM
rainfall data are better at determining rain occurrence and mean values than at determining the rainfall
extremes, and larger difference exists for the maximal daily and maximal 5-day rainfalls. At monthly time
scale, good linear relationships between TRMM rainfall and rain gauges rainfall data are received with the
determination coefficients (R2) varying between 0.81 and 0.89 for the individual stations and 0.88 for
areal average rainfall data, respectively. But the slope of regression line ranges between 0.74 for Yingtan
and 0.94 for Yushan, indicating that the TRMM satellite is inclined to underestimate the monthly rainfall
in this area. The simulation of daily hydrological processes shows that the Water Flow Model for Lake
Catchment (WATLAC) model using conventional rain gauge data produces an overall good fit, but the
simulation results using TRMM rainfall data are discontented. The evaluation results imply that the
TRMM rainfall data are unsuited for daily stream flow simulation in this study area with desired preci-
sions. However, good performance can be received using TRMM rainfall data for monthly stream flow
simulations. The comparison of the simulated annual water balance components shows that the different
rainfall data sources can change the volume value and proportion of water balance components to some
extent, but it generally meets the need of practical use.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Distributed hydrological models have become the main tool to
understand the hydrological processes and solve practical hydro-
logical and water resources problems. Physically-based distributed
hydrological models can fulfill the necessity of describing spatial
heterogeneity, assessing the impact of natural and human induced
changes and providing detailed descriptions of the hydrological
processes in watersheds to satisfy various needs in spatial model-
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ling (Abbott and Refsgaard, 1996). However, these models require
the spatially distributed data as input to reflect the heterogeneity
of base information in the watersheds. The spatial rainfall is one
of the key inputs for these models, and the accuracy of stream flow
predictions from a hydrological model is heavily dependent on the
accuracy of rainfall inputs (Gourley and Vieux, 2006), therefore,
accurate estimate of the rainfall patterns over a catchment and a
region is a great concern (Kurtzman et al., 2009).

Conventional estimates of daily areal rainfall can be obtained by
spatial interpolation of rain gauges’ data (Kurtzman et al., 2009).
Various interpolation techniques have been proposed for areal
rainfall estimations. The isohyetal and Thiessen polygon tech-
niques are commonly used techniques of this kind (Guillermo
et al., 1985). However, direct application of these techniques may
produce inaccurate results because of the effects of topographical
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variation and the limited number of available rainfall stations (Tae-
sombat and Sriwongsitanon, 2009). The geostatistical approaches,
in particular the kriging method and inverse distance weighting
(IDW) technique, have been widely applied for the estimation of
spatially distributed rainfall. But, their results are influenced by
the heterogeneity of the random fields, and the assumption of an
isotropic covariance structure in the kriging method is demon-
strated to be inappropriate in several articles (Brown et al., 1994;
Le et al., 1997; Kibria et al., 2002). Furthermore, most methods
used for interpolating rainfall have a tendency to produce too
smooth rainfall fields, i.e. to underestimate the spatial variability
(Creutin and Obled, 1982; Haberland, 2007), which will affect the
estimation of extreme values and undermine the strength of the
distributed hydrological models (Skaugen and Andersen, 2010).
At the same time, it is both economically and practically impossi-
ble to greatly increase the number of rain gages for estimating the
spatial rainfall (Taesombat and Sriwongsitanon, 2009). Alterna-
tively, the incorporation of satellite-based and weather radar-
based (He et al., 2011) rainfall estimates in hydrological modelling
has the potential to improve our capability to reduce uncertainty in
rainfall inputs (Sawunyama and Hughes, 2008).

Recent development in global and regional satellite-based pre-
cipitation products has greatly improved their applicability as in-
put to large-scale distributed hydrological models (Stisen and
Sandholt, 2010) and are expected to offer an alternative to
ground-based rainfall estimates in the present and the foreseeable
future (Sawunyama and Hughes, 2008). Such data are especially
valuable in developing countries or remote locations, where con-
ventional rain gauge data are sparse or of bad quality (Hughes,
2006). Furthermore, the near-real-time availability of the satel-
lite-based data products makes them suitable for modelling appli-
cations where water resources management is crucial and data
gathering and quality assurance are cumbersome (Stisen and Sand-
holt, 2010). The use of satellite-based information to improve spa-
tial rainfall estimates has been widely reported (Hsu et al., 1999;
Sorooshian et al., 2000; Grimes and Diop, 2003). Nevertheless, sat-
ellites data have biases and random errors that are caused by var-
ious factors like sampling frequency, nonuniform field-of-view of
the sensors, and uncertainties in the rainfall retrieval algorithms
(Nair et al., 2009). It is therefore essential to validate the satellite
derived products with conventional rain estimates to quantify
the direct usability of the products (Nair et al., 2009).

The Tropical Rainfall Measuring Mission (TRMM) is a joint pro-
ject between the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploratory Agency (JAXA)
launched in November 1997 with the specific objectives of study-
ing and monitoring the tropical rainfall (Kummerow et al., 2000;
Rozante et al., 2010). It can provide precipitation products with
high temporal (3 h) and reasonably high spatial resolution
(0.25� � 0.25�) for large-scale distributed hydrological models.
There have been numerous attempts to validate TRMM retrievals
with ground-based estimates in the tropics and the mid-latitudes
(Nair et al., 2009). Nicholson et al. (2003) used gauge data from a
network of 920 stations over West Africa to evaluate TRMM (PR,
TMI, 3B43) rainfall products for the year 1998. While TRMM PR
and TMI products showed a net tendency to overestimate gauge
measurements, 3B43 merged product showed an excellent agree-
ment with gauge measurements on monthly to seasonal time-
scales. Narayanan et al. (2005) validated TRMM 3B42-V5 data
with India Meteorological Department (IMD) rain gauge data and
showed that the satellite algorithm does not pick up very high
and very low daily average rainfalls. Rahman and Sengupta
(2007) compared the Global Precipitation Climate Project (GPCP),
3B42-V5 and 3B42-V6 rainfall products with the IMD gridded daily
rainfall at grid resolution of 1� � 1� for the monsoon season. Their
results showed that GPCP and 3B42-V5 reproduce only the broad-
est features of the monsoon rainfall, but spatial patterns of 3B42-
V6 data show closest agreement with observed patterns of IMD
gauge data except over certain places. Stisen and Sandholt (2010)
evaluated five satellite-based rainfall estimates with temporal res-
olution of daily and spatial resolution between 8 and 27 km
through their predictive capability in a distributed hydrological
model. However, most validation studies are performed at conti-
nent/sub-continent or regional scale. Therefore fewer studies deal
with the comparison between TRMM rainfall and rain gauge data
at catchment scale, and no evaluation of hydrological processes
simulation and water balance analysis using TRMM rainfall data
in mesoscale catchments which will provide useful information
for hydrology studies.

Therefore, the objectives of the study are designed to (1) evalu-
ate and compare the temporal characteristic of daily TRMM rainfall
and the spatial distribution of annual rainfall with that of the rain
gauge data in a mesoscale catchment located in the lower reaches
of the Yangtze River in China. By doing so, different statistical mea-
sures are calculated and the correlations of the TRMM rainfall with
rain gauge data at monthly time scale are investigated; and (2)
cross compare the performance of the TRMM rainfall and rain
gauge data in driving the Water Flow Model for Lake Catchment
(WATLAC) model (Zhang, 2007; Zhang and Werner, 2009; Zhang
and Li, 2009) in simulation of daily and monthly hydrological pro-
cesses at the catchment. Emphasis was paid to investigate the suit-
ability of the TRMM rainfalls for water balance analysis through a
distributed hydrological model at different time scales, although
some researchers consider that most satellite-based rainfall esti-
mation techniques are better suited at determining rain/no rain
situations compared to actually determining the rainfall amount
(Stisen and Sandholt, 2010), and imprecise rainfall amounts and
especially biases are critical in water balance studies (Stisen and
Sandholt, 2010). This study contributes to the enhancement of
knowledge regarding the usefulness of TRMM 3B42-V6 rainfall
data in hydrological modelling studies at catchment scale over
varying time scales.

The rest of this paper is organized as follows. In the next section
we will provide details of the study area and the data used. In Sec-
tion 3, the concept of WATLAC model is briefly described with the
help of cited references. Major results of this study are presented
and discussed in Sections 4 and 5 summarizes the conclusions.
2. Study area and data preparation

The Xinjiang catchment (27�330–28�590N and 116�230–
118�220E) is selected as the study area, which is one of the five river
catchments of Poyang Lake (the largest freshwater lake in China)
basin located in the lower reaches of the Yangtze River (Fig. 1).
The catchment above Meigang Hydrological station covers about
15500 km2 and has a subtropical wet climate characterized by a
mean annual precipitation of 1878 mm for the period of 1960–
2005 and annual mean temperature of 18 �C. The topography
varies from high mountainous and hilly areas (with a maximum
elevation of 2138 m.a.s.l) to alluvial plains in the lower reaches
of the primary watercourses. The Xinjiang River flows primarily
from the east to the west and enters Poyang Lake. The average
stream flow at Meigang station for the 1960–2002 period was
578 m3/s.

Based on the digital elevation model (DEM) data of the catch-
ment which are derived from the National Geomatics Centre of
China, the river network and physical boundaries of the catchment
are delineated. Landuse map is available from previous studies (Ye
et al., 2011a,b) as Fig. 2 shows. In the Xinjiang catchment, forest is
the main land use covering 84% of the catchment area, followed by
crop land of 10% and Shrubland of 5%. Other land uses such as



Fig. 1. Location of Xinjiang catchment in Poyang Lake basin and the distribution of stations.

1 For interpretation of color in Figs. 1–3 and 5–7, the reader is referred to the web
version of this article.
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grassland, water bodies and urban are minor with a total area of
1%. Land use condition is simulated in the model through the
parameters of maximum canopy interception which is assumed
to be linearly proportional to the Leaf Area Index (LAI) (Zhang
and Li, 2009). And LAI for each vegetation class can be derived from
National Oceanic and Atmospheric Administration/Advanced Very
High Resolution Radiometer (NOAA/AVHRR) Normalized Differ-
ence Vegetation Index (NDVI) data through the Simple Biosphere
Model Version 2 (SiB2) method (Myneni and Williams, 1994; Sell-
ers et al., 1994, 1996; Andersen et al., 2002; Zhou et al., 2006):

SR ¼ 1þ NDVI
1� NDVI

ð1Þ

FPAR ¼ FPARmin þ ðFPARmax � FPARminÞ
SR � SRmin

SRmax � SRmin
ð2Þ

LAI ¼ ð1� FclÞLAImax
lnð1� FPARÞ

lnð1� FPARmaxÞ
þ FclLAImax

FPAR
FPARmax

ð3Þ

where SR is the simple ratio of hemispheric reflectance for the NIR
(near-infrared) light to that for the visible light, FPAR is the fraction
of photo-synthetically active radiation, Fcl is the fraction of clumped
vegetation, SRmin and SRmax are SR with 5% and 98% of NDVI popu-
lation. The values of NDVI at 5% population are adopted from SiB2
for all vegetation types (NDVI5% = 0.039 globally). FPARmin = 0.001
and FPARmax = 0.950 consider the satellite-sensed NDVI saturation.
LAImax is the maximum LAI when the vegetation develops fully.

Some useful parameters for each vegetation class are shown in
Table 1 from Zhou et al. (2006).

The soils in the catchment are classified according to the Genet-
ic Soil Classification of China, and soil distributions are obtained
from a soil survey completed by the Land Management Bureau of
Jiangxi Province, China. Soil types of the catchment are dominated
by paddy soil (47%) and red soil (45%); other types include yellow
soil (6%), latosol (1%) and a spot of yellow–brown1 soil (0.7%) and
purplish soil (0.3%) as Fig. 3 shows. The properties of every soil type
are determined from the soil survey (Shi et al., 2004) and are shown
in Table 2, with porosity ranging from 0.48 to 0.50, field capacity
from 0.32 to 0.36, and saturated hydraulic conductivity varying from
0.60 to 0.90 m/d.

Satellite-based rainfall data used in this study are TRMM 3B42-
V6 daily data from 1 January, 1998 to 31 December, 2003. And for
the comparison of rainfall data between TRMM and rain gauges,
we also use the rain gauge data from five national meteorological
stations namely Yushan, Shangrao, Qianshan, Guixi and Yingtan



Fig. 2. The landuse map of study area.

Table 1
Landuse threshold parameters from the literatures.

Type LAImax Fcl NDVI98% Root depth (m) Permeable area (%) Roughness

Croplands 7.0 0 0.674 0.7 70 0.101
Forests 5.7 0.5 0.721 2.5 60 0.122
Shrublands 3.0 1.0 0.674 1.0 80 0.107
Grasslands 1.8 0 0.674 0.5 90 0.085
Water bodies – 0 0.674 1.3a 5 0.073
Urban and built-up – 0 0.674 0.1 5 0.047

a Root depths for water bodies represent the average water depth (Zhou et al., 2006).
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as Fig. 1 shows. Moreover, other meteorological data including
daily maximum and minimum temperature, solar radiation, wind
speed, and relative humidity are derived from these national sta-
tions and used in the study for calculating evapotranspiration
and related processes. These data have been widely used for differ-
ent studies previously and the qualities of the data are quite reli-
able. We also examined the relation between elevation and
rainfall to reflect the difference in mountainous region and in low-
lands, but there is no clear evidence that the rainfall changed with
elevation in the study region. So, the daily rainfall data are directly
interpolated to grid (4 km � 4 km) for the whole basin with the
method of Thiessen polygon to satisfy the requirement of the dis-
tributed hydrological model. In addition, the observed daily stream
flow from the Meigang gauging station is available to calibrate
model parameters and validate the simulation results.

3. Hydrological model

The WATLAC model (Zhang and Werner, 2009; Zhang and Li,
2009), is a grid-based spatially distributed hydrological model with
effective computational techniques to simulate complex spatial
variability of surface and subsurface flows. The model was
designed to simulate processes including canopy interception,
overland flow, stream flow routing, unsaturated soil water storage,
soil lateral flow, soil water percolation to groundwater and satu-
rated groundwater flow driven by rainfall and evaporation. The
land surface (including river networks), unsaturated soil layer
and saturated groundwater aquifer were coupled in the model
and can reflect the interaction of groundwater and surface water.
The most of model parameters can be determined through field
survey or literature values and only few parameters need to be
estimated through calibration. The WATLAC model has been suc-
cessfully applied for water balance analysis of Fuxian lake catch-
ment (Zhang and Werner, 2009), surface–groundwater flow
interactions modelling of Xitiaoxi catchment (Zhang and Li,
2009) and assessment of the effects of future climate change on
catchment discharges and lake water level of Poyang lake (Liu
et al., 2009; Ye et al., 2011a). Details of model structure were pro-
vided in Zhang and Li (2009) and Zhang and Werner (2009) and
therefore only a brief description is given here.

The WATLAC model first calculates the throughfall Pn taking
into account canopy interception which will be evaporated back
into the atmosphere and the maximum soil water storage Smax.
Once the Smax is filled, the exceeding throughfall becomes the sur-
face runoff. The maximum soil water storage Smax is calculated as

Smax ¼ hs � / ð4Þ

where / is the porosity of the soil; hs is the thickness of the simu-
lated soil layer (mm).

The water that infiltrates into the soil subsequently percolates
downwards under gravity to the groundwater table, or flow laterally
close to the surface as soil lateral flow, or else it may be evaporated.



Fig. 3. The soil type map of study area.

Table 2
The property of each soil type from the soil survey.

Soil type Porosity Field capacity Saturated K (m/day)

Red soil 0.48 0.34 0.67
Latosol 0.47 0.34 0.60
Yellow soil 0.50 0.35 0.79
Yellow–brown soil 0.50 0.36 0.90
Paddy soil 0.46 0.33 0.63
Purplish soil 0.48 0.32 0.86
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The groundwater recharge rate RG, is computed as a function of the
drainable soil water, saturated soil hydraulic conductivity and shal-
low aquifer conductivity, similar to that in Neitsch et al. (2002). An
empirical parameter b1 (b1 P 0) is introduced in the computation,
through which the magnitude of the groundwater recharge can be
adjusted and a larger value will result in a greater groundwater re-
charge rate. Generally, it should be set in the range of 0.0–10.0 and
can be best estimated in model calibration.

The soil lateral flow RL is calculated using a function of soil dra-
inable water, soil hydraulic conductivity, soil slope length and
slope gradient as that used in SWAT (Neitsch et al., 2002). Also,
an empirical parameter b2 (b2 P 0) is introduced to reflect the
magnitude of soil lateral value. This parameter is usually in the
range of 0.0–10.0 for most cases and can only be estimated in mod-
el calibration.

Actual evapotranspiration calculation adopts the same ap-
proach as that in USACE (2000), i.e., the total evapotranspiration
is a sum of various components from canopy storage, soil storage
and shallow groundwater. The potential evapotranspiration used
as the up limit of the actual evapotranspiration is calculated using
the Penman–Monteith approach (Xu et al., 2006).

Overland flow routes are generated from DEM by the D-8 meth-
od considering time lag effects when the overland flow is trans-
ferred from overland to known waterways. Stream flow routing
is simulated using the Muskingum method. The saturated ground-
water flow is simulated through MODFLOW-2005 (Harbaugh,
2005) which was integrated in WATLAC and can achieve the inter-
action with surface water flow, i.e. on the one hand, the groundwa-
ter recharge calculated from the surface water model is passed to
the MODFLOW for groundwater flow modelling; on the other hand,
groundwater table simulated from MODFLOW is used in surface
water model to update the thickness of the soil column (Zhang
and Li, 2009).

The model parameters are automatically optimized by the PEST
(Parameter ESTimation) optimization tool (Doherty, 2004). PEST is
a robust and efficient model-independent parameter estimation
software, which uses the Gauss–Marquardt–Levenberg algorithm
to identify the parameter set that gives the least sum of square differ-
ence between simulated and observed data, and has been widely
used for groundwater-surface water optimization problems (Keat-
ing et al., 2003). The model performance is evaluated using statistical
analyses of model outputs. Evaluation criteria, e.g., Nash–Sutcliffe
efficiency (Ens) and determination coefficient (R2) are used to mea-
sure the capability and reliability of the model in describing the ob-
served processes. In addition, for evaluation of systematic errors in
model simulation, the relative runoff depth error (DE) is also ana-
lysed. The values of Ens and DE are calculated, respectively, as

Ens ¼ 1�
Xn

i¼1

ðQobsi � QsimiÞ2=
Xn

i¼1

ðQobsi � QobsÞ2 ð5Þ
DE ¼
Xn

i¼1

ðQsimi � QobsiÞ=
Xn

i¼1

Qobsi � 100% ð6Þ

where Qobsi is the observed stream flow at step i; Qsimi is the sim-
ulated stream flow at step i; and Qobs is the mean observed stream
flow over all time steps; and n is the total time step.
4. Results and discussions

4.1. Validation of TRMM rainfall with rain gauges data

For the comparison of rainfall data between rain gauges and
TRMM, we first analyse several statistical indices of two types of



Table 3
Comparison of statistical indexes between averaged TRMM rainfall and rain gauges rainfall.

Year Areal average (mm/d) Standard deviation (mm) Max. daily rainfall (mm/d) Max. 5-day rainfall (mm/5d) Annual rainfall (mm/y)

Gauging TRMM Gauging TRMM Gauging TRMM Gauging TRMM Gauging TRMM

1998 7.4 6.3 17.9 15.9 146 158 478 312 2702 2281
1999 5.9 5.3 14.2 11.3 148 70 232 174 2176 1930
2000 5.7 4.9 15.6 10.7 175 82 296 157 2075 1788
2001 4.9 5.1 10.3 10.9 103 87 154 117 1801 1844
2002 5.6 6.1 11.5 11.9 71 78 205 231 2057 2234
2003 4.1 4.1 10.6 10.7 89 115 181 252 1477 1506
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rainfall, and the results are shown in Table 3. Areal average rainfall
is an important and useful index to reflect the precision of rainfall
amount. The areal average rainfalls, estimated from rain gauges
data using the Thiessen polygon interpolation method, are 4.1–
7.4 mm/d in 1998–2003 and 4.1–6.3 mm/d for TRMM data in the
Fig. 4. Distribution of daily rainfall in different rainfall classes and th
same period. The differences are small and at an acceptable extent.
But the areal average rainfalls from TRMM data are smaller than
those from rain gauges data in 1998–2000, and the opposite is true
in 2001–2003. A comparison of standard deviations calculated
from the two data sets shows the same situations as those for areal
eir relative contributions to the total rainfall in different years.
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average rainfall. The difference in the extreme rainfall is larger
than that in the mean values and the standard deviations. The
maximal daily rainfall from rain gauges data are 146 mm,
148 mm, 175 mm, 103 mm, 70 mm and 89 mm, respectively in
1998–2003, while they are 158 mm, 70 mm, 82 mm, 87 mm,
78 mm and 115 mm, respectively for TRMM data. It is shown that
the maximal 5-day rainfalls from TRMM data are lower than that
from rain gauges data except in 2002 and 2003. As for the annual
rainfall totals, the TRMM data are smaller than rain gauges data in
1998–2000, but larger than the latter in 2001–2003.

Fig. 4 shows the intensity distributions of daily rainfall in differ-
ent classes and their contributions to the total rainfall in different
years. It is seen that non rainy has the largest occurrence, occurring
almost half of the total days and the second largest class is 0 < rain-
fall 6 3 mm, occurring about 20–30% of the total days in gauges
rainfall. While, the statistics for TRMM rainfall are different from
gauge rainfall, the largest rainfall occurrence is 0 < rainfall 6 3 mm,
accounting for about 40% of the total days and followed by non
rainy (accounting for about 30%). That is to say more non rainy
days are recorded in rain gauges and more days in small rainfall
class (0 < rainfall 6 3 mm) in TRMM data, which is partly because
the rain gauges only refer to five specific points and many small
rainfall (60.01 mm) occurred in some days are regarded as non
rainy in rain gauge situation. The sum of the first two classes, i.e.
non rainy and small rain classes, gives the similar percentage
(�70%) for both TRMM data and gauge data. It can also be seen that
although the occurrences of small rain (0 < rainfall 6 3 mm) are as
Fig. 5. Scatter plots of monthly rainfall from TRMM and rain gauges data fo
high as 40–50% of the total days, the contribution to the total rain-
fall amount is only about 4% in both rainfall data.

It is important to note that the high rainfall ranges play a signif-
icant role in contributing rain amount to the total rainfall. The high
rainfall class (>50 mm) occurs only about 1.1% (maximal 3% in
1998) of the total days and contributes to 22.4% in average values
(maximal 32.5% in 1998) of the total rainfall for rain gauge data
and 15% (maximal 38.3% in 1998) for TRMM data. This kind of
information is essential because thunder showers cause the geo-
graphical slides and flash floods and hence threaten the economy
and human life (Varikoden et al., 2010). The occurrences of the
middle class rainfall ranges (3 mm < rainfall 6 50 mm) are gener-
ally equivalent (accounting for 27.7% in average) for rain gauge
and TRMM rainfall data, but with different contribution rates to
the total rainfall. For the class of 3–10 mm, the statistics for TRMM
rainfall match well with its counterpart in every year. And for the
range of 10–25 mm, the contribution rate is larger in 2000 and
smaller in 2001 than that of rain gauge rainfall, and in other years
they are nearly equivalent.

In order to evaluate the correlation of the two data sets, the
scatter plots of monthly TRMM rainfall against rain gauges rainfall
data are shown in Fig. 5, and the comparison is made for the five
national meteorological stations and the areal average data of the
nearest TRMM pixel. It is seen that the good linear relationships
between the nearest TRMM pixel data and rain gauge data are pre-
sented in every stations, with the highest determination coefficient
(R2) of 0.89 for Yushan station. The R2 values for the rest stations
r the five national meteorological stations and the areal average data.



Table 4
Estimated parameters for two scenarios and the 95% confidence intervals for each parameter.

Parameter Description Initial values Lower bound Upper bound Optimal values

Scenario 1 Scenario 2

e A parameter of Muskingum method (Weighting factor) (dimensionless) 0.107 0.05 0.5 0.138 ± 0.049 0.081 ± 0.022
k A parameter of Muskingum method (Travel time of flood) (day) 1.329 0.5 2.0 1.44 ± 0.082 1.756 ± 0.075
b1 An empirical coefficient for groundwater recharge (dimensionless) 0.753 0.01 10.0 0.387 ± 0.098 0.928 ± 0.211
b2 An empirical coefficient for soil lateral flow (dimensionless) 0.884 0.01 10.0 0.828 ± 0.148 0.184 ± 0.089
b3 An empirical coefficient for infiltration (dimensionless) 0.081 0.01 10.0 0.117 ± 0.004 0.019 ± 0.007

Table 5
Comparison of the model performance using TRMM rainfall and rain gauge rainfall (Values in the gray areas are calibration results).
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vary from 0.81 for Yingtan station to about 0.83 for other 3 sta-
tions. As for areal average, the R2 value is as high as 0.88. But the
slope of regression line ranges between 0.74 for Yingtan and 0.94
for Yushan, and 0.83 for areal average dataset. These values indi-
cate that the TRMM satellite tends to underestimate the monthly
rainfall in this area. In general, the TRMM satellite captures the sig-
nal of rainfall well in comparison with the rainfall measurement
from the manual rain gauges situated in different locations of the
Xinjiang catchment, and the systemic errors are also obvious at
monthly time step.

4.2. Hydrological processes simulation

The study area was discretized into a number of square grids
(4 km � 4 km) considering the heterogeneity of the basin’s topog-
raphy and the stream flow simulation was carried out using the
WATLAC model from 1 January 1998 to 31 December 2003. From
the experiences of the previous studies and in order to maintain
the physical meanings of parameters, in this study, the most phys-
ical parameters of WATLAC including the parameters describing
the properties of landuse, soil and river, etc. are determined prior
from the survey database and literature values according to the
digital soil and land cover maps. Several empirical parameters such
as b1, b2 and b3 for groundwater recharge estimation, soil lateral
flow calculation and soil infiltration respectively and e and k
parameters in the Muskingum method are automatically opti-
mized by the PEST (Doherty, 2004). The initial parameter values
are gained from the previous calibration and the lower and upper
bounds for each parameter are determined according to the phys-
ical meanings and experiences. In this section, the sum of squared
residuals is used as the objective function and the optimization
process is performed in two scenarios: In the first scenario, the dai-
ly rain gauge rainfalls are used to feed the model and to optimize
the parameter values, and then the model is run again using daily
TRMM rainfalls with unaltered model parameter values in the
same periods. The simulation results of the two data sets are com-
pared. In the second scenario, the daily TRMM rainfalls are used to
drive the WATLAC model and to optimize the parameter values,
and then the model is run using the rain gauge rainfalls and the re-
sults are compared. The results of parameters’ optimization and
the summary values of evaluation criteria of model performance
using two types of rainfall data are shown in Tables 4 and 5,
respectively.

It is seen from Table 4 that the optimized parameter values and
their 95% confidence intervals for both scenarios (although some-
how different as expected) are well located within the bounds. Ta-
ble 5 reveals that the model using conventional rain gauge data
produces an overall good fit in the first scenario. The Ens ranges be-
tween 0.81 and 0.96, with an average of 0.93. The relative runoff
depth errors, except in 2003, are less than 8%. In addition, the rel-
atively high values of R2 (from 0.83 to 0.96) show that the model
describes the variation of the observed stream flow well. So, based
on the presented results, the model is believed to be robust and
provides a sound basis for testing the precision and applicability
of TRMM rainfall. However, the results for TRMM rainfall data
are discontented. The Ens values, except in 1998, are not higher
than 0.74 and the R2 ranges from 0.50 to 0.83. The precisions of
the simulated runoff volume are relatively low with the relative
runoff depth errors ranges from �21.33% to 26.36%. In the second
scenario, it can be seen from Table 5 that the TRMM rainfall-based
model calibration produces a slightly improved results with Ens

ranges between 0.48 and 0.81 and the determination coefficients
R2 are mildly increased. The relative runoff depth errors are also
improved from that of the first scenario. At the same time, the per-
formance of the gauge rainfall-based model is still satisfactory. The
Ens values are over 0.8 in five years and the average relative runoff
depth errors is 0.49%; the determination coefficients R2 also gain
the relatively high values. It is obvious that the relative runoff
depth errors are large for TRMM rainfall case in both scenarios
and have the same traits that the model underestimates the runoff
volumes in 1998–2000 but overestimates them in 2001–2003. This
shortcoming originates from the errors of rainfall estimation
through TRMM satellite data as discussed in Table 3.

Fig. 6 shows the comparison of the observed and simulated dai-
ly stream flow hydrographs which are produced by the gauge rain-
fall-based model and TRMM rainfall-based model respectively
with their own optimal parameter values. It is seen that the simu-
lated stream flow hydrographs with rain gauges data demon-
strated a closer agreement with the observed hydrographs, while
the model simulation using TRMM daily rainfall behaved less well
and there was a tendency for the model to miss the extreme peak
flows. This attributes to the low precision of TRMM rainfall data in
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matching the maximal rainfalls as discussed before. It seems that
the TRMM rainfall data are unsuited for daily stream flow simula-
tion in this study area with desired precision.

Subsequently, we also examine the precision of the model using
TRMM rainfall data for monthly stream flow simulation. The eval-
uations of model performance using TRMM rainfall and rain gauge
rainfall for the complete simulation periods and the comparison of
the observed and simulated monthly hydrographs are shown in Ta-
bles 6 and 7, respectively. It can be seen from Table 6 that the
gauge rainfall-based model performs as well as before, with the
Ens of 0.97, the DE of �0.89% and the R2 of 0.97; at the same time,
it is encouraging that the model using TRMM rainfall data also
gains the satisfying results, the Ens and R2 are 0.86 and the DE is
�4.1%. It is obvious from Fig. 7 that the simulated monthly hydro-
graphs generally match well with the observed ones and describe
the seasonal variations well, although it slightly underpredicts
some peak flows when using TRMM rainfall data. From the results
Fig. 6. Comparison of the observed and simula

Table 6
The model performance using TRMM rainfall and rain gauge rainfall at monthly time
step.

Data sets Ens DE (%) R2

Gauge rainfall-based model 0.97 �0.89 0.97
TRMM rainfall-based model 0.86 �4.1 0.86
of monthly simulation we believed that it is feasible to use TRMM
rainfall data for monthly discharges simulation, and it has poten-
tial to be a suitable data source for the data-poor or ungauged ba-
sins, particularly for the large basins in developing countries or
remote locations.
4.3. Water balance analysis

In addition to the comparison of stream flow hydrographs,
water balance result is another important indicator for testing
the validity of rainfall data. So, we examine the difference of water
balance components further from monthly stream flow simula-
tions using rain gauges and TRMM rainfall. According to the above
modelling results, comparisons of the averaged water balance
components from 1998 to 2003 are shown in Table 7. In the model,
the water balance partitions the precipitation into canopy inter-
ception, soil evaporation, surface runoff, groundwater recharge (in-
cludes base flow) and so on. In the rain gauge driven calculation,
10.5% of precipitation is intercepted by canopy which is exhausted
through evaporation, while the rate is 11.3% in TRMM rainfall data
case. The proportion of soil evaporation is 22.7% and 23.8% respec-
tively in gauge rainfall and TRMM rainfall case. Groundwater re-
charge is a large component and determines the amount of base
flow. Although the volume of precipitation has a markable differ-
ted daily hydrographs at Meigang station.



Table 7
Comparison of the water balance components using rain gauges and TRMM rainfall.

Components Gauge rainfall-based model TRMM rainfall-based model

Volume
(mm/y)

Percentage of
precipitation (%)

Percentage of total
runoff (%)

Volume
(mm/y)

Percentage of
Precipitation (%)

Percentage of total
runoff (%)

Precipitation 2049 1930
Canopy

interception
216 10.5 218 11.3

Soil evaporation 466 22.7 460 23.8
Groundwater

recharge
434 21.2 451 23.4

Total runoff 1222 59.6 1182 61.2
Surface runoff 840 68.7 774 65.5
Base flow 382 31.3 408 34.5

Fig. 7. Comparison of the observed and simulated monthly hydrographs at Meigang station.
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ence (2049 mm/y and 1930 mm/y) in different rainfall cases, the
estimated amounts of groundwater recharge are very similar
(434 mm and 451 mm). As for the total runoff, more precipitation
is distributed into runoff in gauge rainfall case (1222 mm) than in
TRMM rainfall case (1182 mm). In fact, this difference is mainly
produced by surface runoff estimation which is 840 mm for gauge
rainfall case and 774 mm for TRMM rainfall case and the propor-
tion to the total runoff are 68.7% and 65.5%, respectively, while
the differences of base flow volume are small (382 mm and
408 mm). The general conclusion that can be drawn from Table 7
is that the different rainfall data sources can change the volume va-
lue and proportion of water balance components, especially for
runoff and its compositions.
5. Conclusions

This paper compares the difference of TRMM rainfall with rain
gauges data at daily and monthly time steps and evaluates the use-
fulness of the TRMM rainfall for hydrological processes simulation
and water balance analysis at the Xinjiang catchment, China. The
results reveal that the differences of areal average rainfall calcu-
lated from two rainfall sources are small and in an acceptable ex-
tent, but larger difference exists for the maximal daily and
maximal 5-day rainfalls. The occurrences of the middle class rain-
fall ranges (3 mm < rainfall 6 50 mm) are generally equivalent for
rain gauge data and TRMM rainfall data, but their contributions
to the total rainfall are different. So, the daily TRMM rainfall data
are better at determining rain occurrence and mean values than
at determining the rainfall extremes. Moreover, the good linear
relationships of the monthly TRMM rainfall with monthly rain
gauges rainfall data are presented in every rain gauge stations.
The simulation of daily hydrological processes shows that the
WATLAC model using conventional rain gauge data produces an
overall good fit, but the results for TRMM rainfall data are discon-
tented at daily time step. The statistical results imply that the
TRMM rainfall data are unsuited for daily stream flow simulation
in this study area with good precision. But, a good performance
using TRMM rainfall data for monthly stream flow simulation
can be achieved. The comparison of water balance components
using two type rainfalls shows that the different rainfall data
sources can change, to some extent, the volume value and propor-
tion of water balance components, especially for runoff and its
compositions.

In conclusion, it can be said that the satellite-based rainfall, e.g.
TRMM data, have good potential for useful application to hydrolog-
ical simulation and water balance calculations at monthly or sea-
sonal time steps, which is a useful merit for regions where rain
gauge observations are sparse or of bad quality. However, several
shortcomings, such as the TRMM overestimates the rainfall in
some years and areas and underestimates in other years and areas,
and failed to detect the extreme rainfall, reduced the accuracy of
stream flow simulation at short time steps and other applications
including drought monitoring and flood forecasting.

The above mentioned conclusions indicate that it is necessary to
further develop algorithms of satellite-based rainfall estimation in
terms of both the accuracy and spatiotemporal resolutions of rain-
fall estimates (Li et al., 2009). And the extensive efforts of satellite-
based products evaluation need to continue in different climatic
areas using different sensors and retrieval methods. A thorough
understanding of the errors in satellite rainfall is needed which is
critical to any analysis of its skill in hydrologic predictions (Pan
et al., 2010). Moreover, hydrologists should develop innovative
ways to use the current generation of satellite-based rainfall, not-
withstanding their limitations, to augment traditional models and
methods (Tang et al., 2010).
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