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Multi-temporal satellite images are widely used to delineate objects of interest for
monitoring surface changes. Threshold value(s) are often determined from a his-
togram of a delineation index. However, the threshold determined may vary and
be case-dependent, with images taken at different times. Although the variation
is well known, its cause remains unclear, and this raises doubts about the reli-
ability of the classification results. This study selects three widely used indices,
the near-infrared (NIR) band, the normalized difference vegetation index (NDVI)
and the normalized difference water index (NDWI), all of which can be used to
delineate water surfaces. Our theoretical analysis reveals that sensor calibration,
the Sun–target–satellite geometry and the atmospheric optical properties create
synthetic effects on the satellite’s digital number (DN) and, subsequently, on the
thresholds for delineation. The DN-based threshold has a significant dependence
on the reflectance-based counterpart, which has been proved with multi-temporal
Moderate Resolution Imaging Spectroradiometer (MODIS) data for the Poyang
Lake region of China. Our results show that a DN-based threshold is generally
higher than a reflectance-based one, and ∼90% of the difference is accounted for
by temporal influences. A quantification of the temporal influences provides a phys-
ical explanation to the variation in thresholds, and the findings should be valuable
for improving the reliability of long-term studies using multi-temporal images.

1. Introduction

Numerous satellite sensors have been launched into orbit for the long-term monitoring
of our changing Earth (Committee on Earth Observation Satellites 2010). Surface
objects of interest and changes in them can be extracted with a classification approach
from multi-temporal satellite data (Pala and Pal 1993, Cheng et al. 2001). The primary
principle of the application of environmental remote sensing to the classification of
surface objects is that each object has a unique electromagnetic spectrum that makes
it unique (Cracknell and Hayes 2007). The simplest approach to classification is to
utilize a single band or to transform multiple bands of satellite image(s) into a new
index in order to generate a histogram. From the histogram, the objects are often
separated from their background with optimal threshold value(s) (Otsu 1979).
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Threshold variation in multi-temporal remote sensing 5863

In addition to the inherent optical properties of surface objects, remotely sensed
data vary with time due to factors such as varying Sun–target–satellite geometry,
atmospheric conditions and sensor degradation (Schott et al. 1988, Yuan and Elvidge
1996, Liu et al. 2006). Given the multi-temporal images, the threshold value(s) deter-
mined may vary and be case-dependent in delineating the same object at different
times. This variation is widely known to exist, yet it remains unclear as to how the
threshold value varies and upon what factors it depends. The use of variant threshold
values without any physical basis raises doubts about the reliability of classification
results. In a study of aerosol optical thickness (AOT), Tanre et al. (1988) found that
in histograms, the variation of apparent reflectance of nearly unchanging ground is
related to the variation in atmospheric optical properties. However, they did not go
further to address the threshold variation. In our recent study on an algal bloom area
extracted from multi-temporal images using both a single-band approach and a band
ratio delineation approach, we reported that the optimal threshold values from his-
tograms had a statistically significant dependence on AOT and the solar zenith angle
(SZA) (Zhang et al. 2009). Yet, the study did not explain the physical basis of the
dependence.

In this study, we attempt to offer for the first time a theoretical basis for the variation
of threshold value(s) in multi-temporal image delineation. We choose three indices that
are widely used for delineation in remote-sensing applications. The indices include the
single near-infrared (NIR) band, the normalized difference vegetation index (NDVI)
and the normalized difference water index (NDWI). Among all land objects, water is
the surface that is most easily discerned by optical remote sensing. Because we do not
intend to study the effectiveness of any delineation approach but want to explore the
threshold variation in delineation from multi-temporal images, we select water surface
as our object. All the three indices can be used to extract inland water surface (Richard
and Mary 1988, Goward et al. 1991, McFeeters 1996). We use theoretical analy-
sis to quantify the temporal factors imposed on satellite images and the subsequent
thresholds. For a case study, we use Moderate Resolution Imaging Spectroradiometer
(MODIS) Level-1B data to inspect and evaluate the temporal influences on thresholds.
Finally, we discuss the potential use of our findings for remote-sensing applications.

2. Methodology

Bi-level thresholding of an object from its background in an image may be
expressed as

f(x) =
{

object (x ≤ t)
background (x > t)

, (1)

where f(x) denotes an extract function, a pixel in an image is defined as an ‘object’ or
‘background’, x is a value in a band of the image or a value transformed from multiple
bands and t is the threshold. A thresholding algorithm or technique may be used to
determine a threshold value. As a result of the thresholding, the image is separated
into the object and the background.

In remote sensing, either a single band or a transformed index can be used to
delineate water surfaces (Richard and Mary 1988, Goward et al. 1991, McFeeters
1996). The NIR band is often selected for the delineation because it is not only
strongly absorbed by water but also strongly reflected by terrestrial vegetation and
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5864 Y. Liu et al.

soil (McFeeters 1996). Water reflects most visible wavelengths, and the visible band is
often combined with the NIR band to generate a transformed index. Examples include
NDVI and NDWI, which are defined as

NDVI = ρNIR − ρR

ρNIR + ρR

(2a)

and

NDWI = ρG − ρNIR

ρG + ρNIR

, (2b)

where ρNIR is the surface reflectance in the NIR band, ρR is the reflectance value in
the red band and ρG is the reflectance value in the green band. The sharp contrast
between the surface of water and other objects enables the threshold values to be easily
determined from a histogram of a NIR, NDVI or NDWI index.

In practice, both the surface reflectance and satellite digital number (DN) have been
used to calculate NDVI or NDWI (e.g., Carlson and Ripley 1997, Teillet et al. 1997).
Because void values are common in surface reflectance products, satellite DN data
are often preferable for water surface delineation. In this case, NDVI and NDWI are
expressed as

NDVIDN = (DN)NIR − (DN)R

(DN)NIR + (DN)R
(3a)

and

NDWIDN = (DN)G − (DN)NIR

(DN)G + (DN)NIR
, (3b)

where (DN)NIR, (DN)R and (DN)G are the DN in the NIR, red and green bands,
respectively. Atmosphere- and/or sensor-induced variation in the DN may result in
a variation of NDVI (Carlson and Ripley 1997, Xiao et al. 2003, van Leeuwen et al.
2006) and NDWI and a variation in the subsequent determination of threshold values.

Variation in DN comes from changes in the spectral properties of a surface
as well as from several other sources. The major time-dependent factors involve
the Sun–target–satellite geometry, atmospheric optical properties and sensor calib-
ration (Schott et al. 1988, Yuan and Elvidge 1996, Liu et al. 2006). These factors
impose temporal influences on the DN but are independent of surface reflectance. For
a Lambertian surface, an analytical form of the DN value of a pixel can be expressed
with the imposed influences for a reflective band (Liu et al. 2011):

DN =TgTsTvG cos θ

G0d2
[DN]0 − TgTsTvG cos θ

G0d2
B0 + B + ρa

TgEG cos θ

πd2
, (4)

where G is the band-specific sensor calibration gain (in DNs per unit radiance), B is
the band-specific sensor calibration bias (in DNs) for zero radiance, d is the Sun–Earth
distance in astronomical units, E is the band-specific exo-atmospheric solar irradi-
ance (W m−2 μm−1), θ is the SZA, ρa is the intrinsic atmospheric reflectance due to
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Threshold variation in multi-temporal remote sensing 5865

Rayleigh and aerosol scattering, Tg is atmospheric absorption, T s is the total down-
ward atmospheric transmission along the Sun–target path and Tv is the total upward
atmospheric transmission along the target–satellite path. The subscript 0 in variables
such as [DN]0 denotes the pixel value taken at an ideal or standardized condition. For
example, d0 = 1, and [DN]0 is taken at the nadir-view when the Sun is at its zenith
under an atmosphere-free condition and without sensor degradation. In this case, we
may derive the following expression for [DN]0 (see Appendix A):

[DN]0 = G
ρE
π

+ B, (5)

where ρ is the surface reflectance in a specific reflective band (Liu et al. 2006, 2011).
In this case, the reflectance can be ρNIR , ρR or ρG .

Equations (4) and (5) mathematically link at-satellite DN to at-surface reflectance.
Provided the atmosphere is basically homogeneous under a clear sky, temporal influ-
ences may alter the statistical properties of an image, but the relative relationship
among pixel features will be retained. The imposed influences may affect the abso-
lute position of a pixel in a histogram but not the relative distribution of the pixel
among the image pixels. If there are no changes in the surface spectrum, the variation
in threshold value(s) should be primarily attributed to temporal influences.

MODIS has a complete set of on-board calibrators (Xiong et al. 2009), and its
sensor calibration gain is updated routinely such that the sensor calibration bias is
zero (B = 0). For MODIS Level-1B, the raw digital signals measured at reflective band
detectors are corrected for all the known instrument effects to produce the corrected
DN (NASA 2006). A Level-1B product contains both calibrated and geolocated at-
aperture radiances. In this case, Tv = 1. The DN value in a reflective band is then
simplified to

DN =TgTs cos θ

d2
[DN]0 + ρa

TgEG cos θ

πd2
. (6)

From equations (5) and (6), we have a DN value in the NIR band of

DNNIR = Tg,NIR ENIR GNIR cos θ

πd2

(
Ts,NIRρNIR + ρa,NIR

)
. (7a)

From equations (2)–(6), we obtain the following relationship between NDVI and
NDVI thresholds for DN (NDVIDN):

1 − [NDVI]DN

1 + [NDVI]DN
= Tg,RERGR

Tg,NIRENIRGNIR

(
Ts,RρNIR

Ts,NIRρNIR + ρa,NIR

1 − [NDVI]
1 + [NDVI]

+ ρa,R

Ts,NIRρNIR + ρa,NIR

)
.

(7b)

Likewise, the relationship between NDWI and NDWIDN is given in the following
equation:

1 − [NDWI]DN

1 + [NDWI]DN
= Tg,NIRENIRGNIR

Tg,GEGGG

(
Ts,NIRρG

Ts,GρG + ρa,G

1 − [NDWI]
1 + [NDWI]

+ ρa,NIR

Ts,GρG + ρa,G

)
.

(7c)
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5866 Y. Liu et al.

Because MODIS spectral reflective bands are well placed to avoid most atmospheric
absorption features (Barnes et al. 1998, van Leeuwen et al. 2006, Chander et al. 2010),
Tg is approximately equal to unity and can be ignored in equations (7a)–(7c).

In general, equations (7a)–(7c) reveal that satellite DN-based values are a func-
tion of band-specific sensor gain, atmospheric transmission, path radiance and surface
reflectance. In other words, the senor gain, atmospheric transmission and path radi-
ance imposed on the surface reflectance offer explanations for the variations in
DN-based values and subsequent thresholds.

3. Data and processing

MODIS products over the Poyang Lake region of China, located at 28◦ 22′–29◦
45′ N, 115◦ 47′–116◦ 45′ E in a humid subtropical climate zone, were obtained. The
dominant land covers include water, wetland vegetation, agricultural fields, grassland
and bare land surfaces. The Poyang Lake wetland is well known as a part of the
Ramsar Convention List of Wetlands of International Importance. It has important
hydrological, biological, ecological and economic consequences.

MODIS images of the study area were selected for 33 cloud-free dates in 2008.
MOD02_QKM, MOD02_HKM, MOD03_L1A, MOD04_L2 and MOD09 data were
obtained from the Warehouse Inventory Search Tool (https://wist.echo.nasa.gov/).
The data were generated from the Product Generation Executive (PGE) code,
Version 5 (http://modis-sdst.gsfc.nasa.gov/). The MOD02_QKM and MOD02_HKM
data sets contain both Level-1B calibrated and geolocated at-aperture radiances for
visible and NIR bands (Masuoka et al. 1998). The MOD02_HKM data sets were
used to extract DN values in the green band (0.545–0.565 μm) at 500 m resolu-
tion, and the MOD02_QKM data sets were used to extract DN values in the red
band (0.62–0.67 μm) and the NIR band (0.841–0.876 μm) at 250 m resolution. The
MOD03_L1A geolocation product contains geodetic coordinates, solar zenith and
azimuth angles for each MODIS pixel (Wolfe et al. 2002). The data sets were used to
calculate the Sun–target–satellite geometry parameters. The MOD04_L2 data contain
the ambient AOT (0.47, 0.55 and 0.66 μm) and path radiance (0.47 and 0.66 μm)
at a spatial resolution of 10 km (at nadir) (Remer et al. 2005). The MOD09 data
contain surface reflectance, which was computed from the MODIS Level-1B data
for each band (Masuoka et al. 1998). This is an estimate of the surface reflectance
that would be measured without an atmosphere. The reflectance data in the green,
red and NIR bands were used in this study. The MODIS data obtained were re-
projected onto the Universal Transverse Mercator (UTM) coordinates using the
nearest-neighbour algorithm with the WGS-84 (World Geodetic System). The algo-
rithm does not alter the DN or reflectance value of a pixel, and this does not affect the
pixel distribution on a histogram of a NIR, NDVI or NDWI index and the subsequent
delineations.

The updated radiance scales were extracted from the head file of the MOD02_QKM
data to calculate sensor gain for the green band (GG) and from the head file of the
MOD02_HKM data to calculate GR and GNIR for each date (NASA 2006). The value
of E was 1840 W m−2 μm−1 for the green band, 1571 W m−2 μm−1 for the red
band and 971.9 W m−2 μm−1 for the NIR band (Chander et al. 2010). The AOT
values of 0.47, 0.55 and 0.66 μm and a path radiance of 0.66 μm were extracted
from MOD04_L2. The Ångström law was used to calculate AOT at 0.86 μm for
the MODIS NIR band (King et al. 1999). The values of path radiance at 0.55 and
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Threshold variation in multi-temporal remote sensing 5867

0.86 μm were estimated using empirical linear relationships between AOT and path
radiance for a relatively clear sky (Oliveros et al. 1998). Atmospheric transmission,
T s, was calculated using Ts = e−τ/ cos θ , where τ = τ r + τ a, τ a is the aerosol optical
thickness and τ r is Rayleigh optical thickness. τ r was estimated using the equation
τr = 0.008569λ−4

(
1 + 0.0113λ−2 + 0.00013λ−4

)
, where λ is the wavelength (Hansen

and Travis 1974). Mathematically, AOT and SZA are the primary parameters used to
determine atmospheric transmission and path radiance for the bands used.

Surface reflectance was extracted from the MOD09 data sets for the green, red and
NIR bands. To match the spatial resolution of the red and NIR bands, the 500 m
green-band data were re-sampled at 250 m using the nearest neighbour algorithm.
Equation (2) was then applied to produce NDVI and NDWI images. The histogram
of each index (NIR, NDVI or NDWI) was generated for the delineation of the water
surface. The sharp contrast between the water and land surfaces resulted in bimodal
histograms. For optimal thresholding, a threshold value was first determined based
on the mid-point between the water and land maxima in a generated histogram
(Bryant 1999). The threshold value was adjusted slightly such that the extracted
features optimally matched both the known lake banks and the enclosed lakes dis-
played in the false-colour image produced from the green-, red- and NIR-band data
for the corresponding date. In some cases where the boundary of an enclosed lake
was unclear, the threshold value was adjusted to incorporate image texture tech-
niques in which the variance of the pixel values within a specified neighbourhood
around each image pixel was used as a measure of texture (Shoshany and Degani
1992). The optimally determined value was also confirmed with an inspection of the
extracted water surfaces using high-resolution Landsat Thematic Mapper (TM) and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data.
Subsequently, the MODIS-extracted water areas agreed, within a 4% difference on
average, with that of water areas extracted from the Landsat TM and ASTER images.

Alternatively, DN values were extracted from the MOD02 data sets for green, red
and NIR bands using a similar procedure. The 500 m green-band data were re-sampled
to 250 m. The DN data were applied to generate NDVI and NDWI with equation
(3). Optimal threshold values were subsequently determined using the same approach
as used with the MOD09 data, and the reflectance- and DN-based thresholds were
obtained for all the MODIS images.

Alternatively, equations (7a)–(7c) and reflectance-based optimal thresholds were
used to obtain the estimated threshold values for the DN-based case. The estimated
thresholds were compared with the DN-based values to determine the relationships
between the reflectance- and DN-based thresholds. The mean and standard deviation
(SD) were calculated for all the variables using a normality test. In addition, a regres-
sion analysis was performed to quantify the relationship and to further evaluate the
influences of key parameters on the DN-based thresholds.

4. Results and discussion

4.1 Variation of thresholds for water surface delineation from multi-temporal images

Figure 1 shows the variation in threshold values used to delineate water surface from
multi-temporal images of NIR, NDVI and NDWI. The NIR threshold values for
reflectance (NIRref) range from 0.034 to 0.130. The mean is 0.065 with a one-sigma
SD of 0.021 (table 1). The threshold values are generally lower than 0.1, which is
attributed to strong absorption by water in the NIR band, distinguishing water from
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Figure 1. Variation of reflectance- and DN-based thresholds for water surface delineation
from multi-temporal MODIS images of NIR (a), NDVI (b) and NDWI (c) in the Poyang Lake
region of China in 2008.

soil and vegetation. Alternatively, the NIR thresholds for DN (NIRDN) range from
132 to 440 with a mean and SD of 236 and 80, respectively. As the numerical range
of valid DN data is 0–32 767 (NASA 2006), all the NIRDN values are larger than the
NIRref values. Despite this, they display similar fluctuations (figure 1(a)).

The reflectance- and DN-based NDVIs have the same numerical range and are com-
parable in scale. The NDVI thresholds for reflectance (NDVIref) values range from
−0.122 to 0.122 with a mean of −0.006 and a one-sigma SD of 0.074 (–0.006 ±
0.074; table 1). The values vary but are generally close to 0. However, the NDVIDN
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Table 1. Statistics of threshold values for NIR, NDVI and NDWI.

Min Max Mean SD RMSE
Difference

(%)

NIRref 0.034 0.130 0.065 0.021 −
NIRDN 132 440 236 80 −

NIR NIRDN,est 119 437 209 82 −
(NIR)DN − (NIR)ref − − − − −
(NIR)DN − (NIR)DN,est − 28 97 27 21 35 11.4
NDVIref −0.122 0.122 −0.006 0.074 −
NDVIDN 0.022 0.277 0.139 0.075 −

NDVI NDVIDN,est 0.066 0.257 0.159 0.057 −
(NDVI)DN − (NDVI)ref 0.049 0.241 0.146 0.037 0.152
(NDVI)DN − (NDVI)DN,est −0.126 0.083 −0.020 0.043 0.047 13.7
NDWIref −0.144 0.153 −0.017 0.077 −
NDWIDN 0.004 0.281 0.150 0.078 −

NDWI NDWIDN,est −0.053 0.273 0.134 0.086 −
(NDWI)DN − (NDWI)ref 0.060 0.356 0.167 0.062 0.181
(NDWI)DN

− (NDWI)DN,est

−0.151 0.152 0.016 0.060 0.062 9.6

Note: DN, digital number; NIR, near infrared; NDVI, normalized difference vegetation index;
NDWI, normalized difference water index; RMSE, root mean square error; SD, standard
deviation.

values range from 0.022 to 0.277 with a mean and SD of 0.139 and 0.075, respectively
(0.139 ± 0.075; table 1). NDVIDN is generally higher than NDVIref, although they
display similar fluctuations (figure 1(b)). This similarity leads to the similar SD values
determined for NDVIref and NDVIDN (table 1).

The reflectance-based NDWI (NDWIref) thresholds range from −0.144 to 0.153
(−0.017 ± 0.077; table 1). Similar to NDVI, NDWIref is generally close to zero with
some variability. The DN-based (NDWIDN) thresholds are generally higher than the
reflectance-based thresholds (figure 1(c)), which range from 0.004 to 0.281 (0.150 ±
0.078; table 1). The SD values of NDWIref and NDWIDN thresholds are close to each
other.

The above results reveal that the thresholds vary from day to day. The variation is
non-negligible within the same index or between different indices for both reflectance-
and DN-based values. Therefore, the differences between the reflectance- and DN-
based values or the uncertainties in the DN-based values must be accounted for, with
a focus on the reliable use of multi-temporal satellite data.

4.2 Relationships between reflectance- and DN-based thresholds

The above analysis demonstrates that the reflectance- and DN-based thresholds had
similar temporal fluctuations and differences in magnitude. In this section, we inspect
the causative relationship between the reflectance- and DN-based values and discuss
what led to the variation in the DN-based threshold values.

With regard to NIR, NIRDN shows a significant relationship with NIRref (coef-
ficient of determination, R2 = 0.58, p < 0.005; figure 2(a)), with the NIRDN value
being a combined result of surface reflectance and temporal influences in terms of
sensor gain (GNIR), SZA, d, path radiance and atmospheric transmission. Combining
the parameters with NIRref, we estimated the DN-based threshold (NIRDN,est) using
equation (7a). The estimated values agree well with the NIRDN values (R2 = 0.92,
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Figure 2. Relationship between reflectance- and DN-based thresholds for the (a) NIR band,
(c) NDVI and (e) NDWI, and that between DN-based and estimated thresholds for the (b) NIR
band, (d) NDVI and (f ) NDWI.

p < 0.005; figure 2(b)). The overall NIRDN-to-NIRDN,est difference is 27 ± 21, ∼11.4%
of the mean of NIRDN thresholds (table 1). The improved R2 and the small difference
also indicate that equation (7a) was effective in accounting for major influences on
NIRDN.

NDVIDN is dependent on NDVIref with R2 = 0.77 (p < 0.005) and the mean and
SD can be given by 0.146 ± 0.037. Given that the variation in NDVIref was small
(0.074, one-sigma SD), the large difference between NDVIDN and NDVIref should be
accounted for with other sources. With equation (7b), we used the parameters relevant
to temporal influences on NDVIref to estimate the DN-based threshold (NDVIDN,est).
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As a result, the difference between NDVIDN and NDVIref decreased from 0.146 ±
0.037 to −0.020 ± 0.043 (the NDVIDN-to-NDVIDN,est difference) by 87.3%, and 13.7%
difference remained (table 1). The root mean square error (RMSE) between NDVIDN

and NDVIref also decreased from 0.152 to 0.047. The temporal influences were inferred
to account for ∼90% of the difference between the NDVIDN and NDVIref. Although
the correlation coefficient decreased from R2 = 0.77 (p > 0.005) to R2 = 0.69 (p >

0.005), the thresholds are distributed close to the 1:1 line in the NDVIDN−NDVIDN,est

space (figures 2(c) and (d)). The decrease in R2 is attributed to the estimation errors in
the parameters used in equation (7b).

NDWIDN demonstrates a relatively weak, yet significant, relationship with NDWIref

(R2 = 0.47, p > 0.005). The NDVIref variation is 0.077 (one-sigma SD), less than half
of the difference between NDWIDN and NDWIref (0.167 ± 0.062). Imposing tem-
poral influences on NDWIref with equation (7c), we obtained the estimate of the
DN-based threshold (NDWIDN,est). Consequently, the difference between NDWIDN

and NDWIref was reduced to 0.016 ± 0.060 (the NDWIDN-to-NDWIref difference),
with 9.6% difference retained (table 1). Correspondingly, the RMSE decreased from
0.181 to 0.062. The temporal influences were inferred to account for over 90% of the
difference between NDWIDN and NDWIref. The correlation coefficient increased from
R2 = 0.47 (p > 0.005) to R2 = 0.55 (p > 0.005), and the thresholds are close to the
1:1 line in the NDWIDN−NDWIDN,est (figures 2(e)–(f )) space.

Overall, the variation in a reflectance-based index is generally lower than its dif-
ference from the DN-based counterpart. The temporal influences on a DN-based
index can be described quantitatively with equations (7a)–(7c). In the case exam-
ined, it accounts for ∼90% of the difference between the DN- and reflectance-based
thresholds. Quantification of temporal influences reduced the uncertainties relevant
to the thresholds. In other words, even with variations, the DN-based index could
be used for multi-temporal image delineation with a high accuracy, similarly to the
reflectance-based delineation.

4.3 Influences of key parameters on DN-based thresholds

Temporal influences on DN-based thresholds can be described by equation (7) and
three related key parameters, including band-specific G, SZA and spectral AOT.
Table 2 shows the statistics of the parameters used in this study.

GNIR ranges from 12.47 to 12.64 with 12.59 ± 0.05 DNs per unit radiance. Its vari-
ation is less than 0.5% with reference to the mean. GR has a range of 4.75–4.78 with

Table 2. Statistics of sensor gain, SZA and AOT.

Min Max Mean SD

GNIR 12.47 12.64 12.59 0.05
GR 4.75 4.78 4.77 0.01
GG 5.92 6.11 5.99 0.07
GR/GNIR 0.3773 0.3811 0.3786 0.0011
GNIR/GG 2.0420 2.1321 2.1033 0.0338
SZA 15.2 56.3 43.4 12.2
AOT (0.55 μm) 0.08 0.77 0.28 0.16

Note: AOT, aerosol optical thickness; NIR, near infrared; SD, standard deviation; SZA, solar
zenith angle.
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4.77 ± 0.01 DNs per unit radiance, whereas GG has a range of 5.92–6.11 with 5.99 ±
0.07 DNs per unit radiance. Both GR and GG vary by less than 1% of their mean
value. In regard to GR/GNIR and GNIR/GG, the former had a variation of ∼0.3% and
the latter varied by less than 2% with reference to their respective mean values. Overall,
the sensor calibration gain has minor effects on the DN-based threshold for the cases
examined.

The major influences imposed on the DN-based values came from the Sun–
target geometry, as given by the SZA, and from the atmospheric optical properties,
as given by the AOT. The NIRDN values have a significant positive dependence
on AOT (0.856 μm; figure 3(a)). NIRDN rose approximately 103 DNs with an
increase of 0.1 AOT. However, NIRDN shows a negative dependence on SZA
(figure 3(b)). NIRDN changed approximately 50 DNs with a change of SZA by
10◦. NDVIDN has a positive, but insignificant, relationship with AOT (figure 3(c)).
NDVIDN is significantly dependent on SZA with R2 = 0.52, slightly lower than the
coefficient for NIRDN versus SZA. NDWIDN does not show a significant dependence
on either AOT or SZA, although its variation resulted mainly from temporal factors
(figure 2(f )).

In general, a DN-based threshold is subject to variation in temporal influences, and
in the case examined, the major temporal factors account for over 90% of the varia-
tion, but this does not necessarily mean that the variation is definitely dependent on
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Figure 3. Relationship of the DN-based threshold with AOT (a, c) and SZA (b, d) for the NIR
band (a, b) and for the NDVI (c, d).
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the key parameters. For multi-temporal remote-sensing applications, our quantifica-
tion of temporal influences provides an insightful view into the variation in DN-based
threshold. These findings improve the knowledge in this field and are valuable for
quantitative remote sensing. The methodology developed here is applicable to other
indices and for cases in which other objects are extracted.

5. Conclusions

Based on quantification of temporal influences on satellite images, we conducted a
theoretical analysis of variation in a DN-based threshold for water surface delineation
from multi-temporal images. We used the single NIR band and NDVI and NDWI
indices for delineation with multi-temporal MODIS data. Our results show that a
DN-based threshold has a significant dependence on the reflectance-based counter-
part, and the former is generally larger than the latter. In the case examined, temporal
influences accounted for ∼90% of the difference.

Quantification of temporal influences offers a physical explanation of the varia-
tion in the threshold and reduces the relevant uncertainties. These findings should be
valuable for quantitative remote sensing and for improving the reliability of diverse
long-term studies using multi-temporal images. Further studies on the application of
the proposed methodology to other indices to extract other objects are necessary.
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Appendix A. Derivation of equation (5)

The DN for a specific reflective band recorded by a satellite sensor can be related to
surface reflectance through the following equations (Vermote et al. 1997):

DN =GL + B, (A1)

ρTOA = πLd2

E cos θ
, (A2)

ρTOA = Tg

[
ρa + ρTsTv

1 − ρS

]
, (A3)

where G is the band-specific sensor calibration gain (in DNs per unit radiance),
L is the at-satellite radiance (W m−2 sr−1 μm−1), ρTOA is the top-of-atmosphere
(TOA) reflectance and S is the spherical albedo of the atmosphere. Other symbols
are described in §2. For [DN]0 taken at the nadir-view when the Sun is at its zenith
under an atmosphere-free condition and without sensor degradation, d = 1, cos θ = 1,
Tg = 1, T s = 1, Tv = 1, ρa = 0 and S = 0. From equations (A1)–(A3), we subsequently
have

[DN]0 = G
ρE
π

+ B. (A4)
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