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Abstract  Symbiodinium sp. occurs in a symbiotic association with various marine invertebrates, 
including the scleractinian corals. Understanding the flexibility and specificity in coral-algal symbiosis can 
have important implications for predicting the future of coral reefs in the era of global climate change. In 
the present study, we conducted Symbiodinium phylotype analysis, based on polymerase chain reaction 
and restriction fragment length polymorphism (PCR-RFLP), in the scleractinian coral, Galaxea fascicularis, 
from a tropical fringing reef in Hainan Island, over a 1-yr period. Our results showed that Galaxea 
fascicularis could associate with Symbiodinium clade C and D either individually or simultaneously. 
However, during the sampling period, the Symbiodinium phylotype did not change significantly in the 
scleractinian coral Galaxea fascicularis, although the seawater temperature decreased sharply in the winter 
season. This study further suggests that the shift in Symbiodinium communities in response to seasonally 
fluctuating environments might not be a universal feature of coral-algal associations.
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1 INTRODUCTION
Symbiotic algae of the genus Symbiodinium supply 

up to 95% of the host coral’s energy requirements, 
and play an important role in the coral reef ecosystem 
(Muscatine, 1990). Because of the limited 
morphological variation, early studies suggested that 
symbiotic algae of the scleractinian coral belonged 
to a single dinoflagellate species, Symbiodinium 
microadriaticum (Freudenthal, 1962). However, 
recent studies revealed that the genus Symbiodinium 
consists of at least nine major clades (A-I), based 
on the analysis of nuclear ribosomal DNA and 
chloroplast large subunit (cp23S) rDNA genes 
(Rowan and Powers, 1991; van Oppen et al., 2001; 
Santos et al., 2002; Pochon and Gates, 2010). Among 
these, six clades (A–D, F and G) are currently known 
to associate with the scleractinian corals (van Oppen 
et al., 2001, 2005; Baker, 2003), and clades A, C and 
D are predominant (Baker, 2003; Goulet, 2006).

The holobionts (coral and Symbiodinium) are 
sensitive to environmental factors such as elevated 
sea surface temperature, altered irradiance and the 
presence of pollutants and other environmental 
changes (Glynn, 1996; Brown et al., 2000; Douglas, 
2003). The loss of Symbiodinium or photosynthetic 
pigments is known as “coral bleaching” and may 
cause coral death and reef degradation if they are not 
recovered in a short time (Hoegh-Guldberg, 1999; 
Glynn et al., 2001). Bleaching susceptibilities are 
variable, not only among coral species, but also 
among conspecific populations in different areas 
(Hoegh-Guldberg and Salvat, 1995; Berkelmans and 
Oliver, 1999; Loya et al., 2001). Several studies 
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have proved that the different clades of Symbiodinium 
in the same coral species have distinctly physiological 
and ecological responses to environmental changes 
(Baker, 2001; Diekmann et al., 2002; Rowan, 2004; 
Berkelmans and van Oppen, 2006). Therefore, the 
symbiotic algae of the genus Symbiodinium are 
thought to play an important role in the adaption or 
acclimatization of the host corals to environmental 
changes (Baker, 2003). For example, environmental 
changes may induce a shift in Symbiodinium 
communities by providing an opportunity for a 
previously rare phylotype of Symbiodinium to 
become dominant in the scleractinian coral, or by 
the coral attaining a new phylotype of Symbiodinium 
from the environment (Baker, 2003). The composition 
of Symbiodinium phylotypes in a single colony may 
also fluctuate with a particular perturbation (Chen 
et al., 2005; Thornhill et al., 2006a), but stability in 
coral and Symbiodinium associations has also been 
showed in previous studies (Thornhill et al., 2006b; 
Goulet et al., 2008; Sampayo et al., 2008; Stat et al., 
2009). Therefore, it remains controversial whether 
Symbiodinium and their host corals are flexible.

Galaxea fascicularis is a spawning scleractinian 
coral species common in Indo-Pacific regions. 
Previous studies have shown that G. fascicularis 
harbors two clades of Symbiodinium (Dong et al., 
2009; Huang et al., 2006, 2011). It is unknown 
whether environmental disturbance can induce a 
shift in the scleractinian coral G. fascicularis in 
a fringing reef region in the South China Sea. In 
the present study, we investigated the composition 
of Symbiodinium phylotypes in G. fascicularis in 
a fringing reef of Hainan Island, from July 2007 
to October 2008, based on PCR-RFLP (restriction 
fragment length polymorphism) analysis. This 
research may contribute to understanding the 
relationship between coral and Symbiodinium under 
natural environments. 

2 MATERIAL AND METHOD
2.1 Study site and collection of corals 

The study area was located at Xiaodonghai Bay 
(XDH) on the south coast of Hainan Island, situated 
in the north of the South China Sea (Fig.1), where 
there is a typical fringing reef. From July 2007 to 
October 2008, fragments of G. fascicularis were 
haphazardly sampled, by scuba diving, from a reef 
flat at XDH, on a bimonthly basis. Nearly 20 adult 
colonies at two different depths (3 m and 9 m) were 
randomly sampled along a fixed transect line laid on 

the reef flat. Due to the fixed nature of the transect 
line, most colonies could have been re-sampled 
during our study period. All samples were placed in 
pre-labeled plastic bags and filled with local sea 
water, and immediately transported to the laboratory 
of Tropical Marine Biological Research Station in 
Hainan, near the sampling area.

2.2 Molecular phylotyping

DNA was extracted from the stored coral samples 
as described by Chen and Yu (2000) and Zhang and 
Lin (2005) with slightly modifications. Briefly, the 
fragments were preserved in DNA isolation buffer 
(containing 0.1 mol/L EDTA, 1% (w/v) sodium 
dodecyl sulfate, 10% (w/v) cetyltrimethylammonium 
bromide). Proteinase K (Promega) was then added, 
to a final concentration of 0.5 mg/mL, prior to 
incubation at 55°C for at least 10 h. DNA was 
then isolated by adding 17 μL of 5 mol/L NaCl 
and incubating at 55°C for 10 min, followed by one 
chloroform extraction and one phenol-chloroform 
extraction. The DNA was then purified by being 
passed twice through DNA Clean and Concentrator 
columns (Zymo Research, Orange, CA). The DNA 
was resuspended in 50 μL aliquots of TE buffer 
and stored at -20°C until PCR was performed. The 
5′ end of the 28S rDNA region of 520 bp in length 
was amplified using a host-excluding primer pair 
(5S: 5′-GCCGACCCGCTGAATTCAAGCATAT-3′, 
and D23zoox: 5′-TGTGGCAYGTGACGCGCAAGC
TAAG-3′) (Chen et al., 2005). The PCR was 
performed in a PTC-200 thermal sequencer (MJ 
Research, USA), using the following thermal cycles: 
1 cycle at 95°C (3 min), 50°C (1 min) and 72°C 
(2 min); 4 cycles at 94°C (30 sec), 50°C (1 min) and 
72°C (2 min); 25 cycles at 94°C (30 s), 57°C (1 min) 
and 72°C (2 min). The amplification reaction was 

Fig.1 Location of research site in Sanya, Hainan Island
The star mark indicates sampling area. XDH means Xiaodonghai Bay.
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conducted with 50 to 200 ng of a DNA template and 
Taq polymerase (Fermentas, Germany), in a 50 μL 
reaction volume, using a buffer supplied with the 
enzyme, under conditions recommended by the 
manufacturer. The PCR products were electrophoresed 
in a 1.0% agarose (BioWest, Spain) gel, using 
1 × TAE buffer to assess the yield. PCR products 
were then characterized using the restriction enzyme, 
Rsa I (Fermentas, Germany). Restriction fragments 
were examined by electrophoresis on 2.0% low 
melting temperature agarose (BioWest, Spain).The 
profiles were photographed and analyzed using the 
Syngene Gene Genius imaging system (Syngene, 
USA).

2.3 Seawater temperature measurements

Seawater temperature was recorded every 15 min 
at the sampling station in XDH at depths of 3 m 
and 9 m, using data loggers (HOBO Water Temp 
Pro, Onset. Accuracy ± 0.1°C).

2.4 Statistical analyses

Statistical tests were performed using SPSS v 11.0 
(SPSS Inc). Non-parametric statistics were used 
since data were not distributed normally. The 
significance of temporal fluctuations of Symbiodinium 
compositions in the bimonthly population survey 
were examined using the Chi-Square test.

3 RESULT AND DISCUSSION
Genomic DNA was successfully extracted from 

all 206 G. fascicularis colonies. A 520 bp fragment 
of 28S rDNA in Symbiodinium was amplified. 
As described by Chen et al. (2005), the restriction 
fragment length polymorphisms (RFLPs) patterns 
of 28S rDNA digested with the restriction enzymes 
Rsa I indicated the existence of two phylotypes of 
Symbiodinium in G. fascicularis: clade D consisting 
of three fragments of 220, 200 and 100 bp; clade C 
consisting of two fragments of 320 and 200 bp. 
There was also a mixture of clades D and C consisting 
of all four of these fragments (Fig.2). 

PCR-RFLP analysis of 28S rDNA indicated that 
G. fascicularis associated with clade C and/or D 
zooxanthellae in spite of the changes of sampling 
time and depth (Fig.2). The phylotype frequencies 
of the populations did not change significantly over 
1-year at either the 3 m depth (χ2 = 1.540, P = 
1.00 > 0.05) or the 9 m depth (χ2 = 0.753, P = 1.00 > 
0.05). Therefore, no temporal changes in the 
composition of Symbiodinium phylotypes were 
observed in the scleractinian coral G. fascicularis. 

No coral bleaching events or other mortality were 
observed during the period of sample collection.

During the study period, the seawater temperature 
of the sampling station ranged from 19°C (January 
to February, winter) to 30°C (September to October, 
summer) (Fig.4). At the depth of 3 m, the highest 
temperature reached was 31.7°C, on Jun. 25th, 2007, 
and the lowest temperature reached was 19.9°C, on 
Feb. 2nd, 2008. At the depth of 9 m, the highest 
temperature reached was 30.8°C, on Jun. 25th, 2007, 
and the lowest temperature reached was 19.7°C, 
on Feb. 13rd, 2008. The average daily temperatures 
showed little difference between the different depths 
most of the time, except in the rainy season (May to 
October). 

Our present results suggest that the dominant 
strain of Symbiodinium in the scleractinian coral 
G. fascicularis did not significantly change with 
the fluctuations of seawater temperature. It may 
indicate a high degree of stability in Symbiodinium 
communities within the scleractinian coral. These 
results are consistent with some previous studies 
showing a lack of significant change over time in 
symbiont populations within anthozoans, including 
scleractinian corals, soft corals and sea anemones 
(LaJeunesse et al., 2004; Thornhill et al., 2006a, b; 
Goulet et al., 2008; Sampayo et al., 2008; Stat et al., 
2009). Despite the fact that many of these studies 
encompassed serious environmental disturbances 
such as bleaching events (Goulet et al., 2008; Stat 
et al., 2009) or coral diseases (Kirk et al., 2005), 

Fig.2  The typical profile of RFLP band patterns of 
Symbiodinium in Galaxea fascicularis obtained in 
this study 

Lanes 1 and 2 were RFLP band pattern of Symbiodinium clade C; lanes 
3 and 4 were RFLP band pattern of Symbiodinium clade D; lanes 5 and 
6 were the mixture of Symbiodinium clades C and D; lanes at both ends 
of the gels labeled with M were molecular weight standards of a 100-bp 
DNA ladder and DL 2000 marker. RFLP means restriction fragment 
length polymorphism.
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the overriding trend is the stability in symbiont 
composition. The host coral and its symbiont could 
have formed a stable symbiotic relationship in the 
long period of co-evolution (Stat et al., 2009). Goulet 
(2006) reported that most corals do not change their 
symbiotic algae over time. 

However, Buddemeier and Fautin (1993) proposed 
the “Adaptive Bleaching Hypothesis” (ABH), which 
hypothesized that this symbiont flexibility enables 

the corals to respond to thermal stress events due to 
a relative increase in abundance of heat-resistant 
symbionts at the cost of heat-sensitive ones (symbiont 
shuffling), resulting in a rapid increase in thermo-
tolerance (Baker, 2003; Berkelmans and van Oppen, 
2006). In the present study, the lack of fluctuation 
in symbiont type during the winter and summer 
may suggest that these holobionts in fringing 
reefs maintain their association over the range of 

Fig.3  Proportions of Galaxea fascicularis colonies possessing each symbiont type in samples from reef building corals in 
Xiaodonghai Bay

a. Symbiont type composition at 3 m depth; b. Symbiont type composition at 9 m depth; The numbers of samples collected each time are indicated in 
parentheses above the bars. 
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Fig.4  Average daily seawater temperature at depths of 3 m and 9 m in Xiaodonghai Bay from June 2007 to December 
2008
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environmental fluctuations. In contrast, spatial and 
temporal variability in Symbiodinium phylotypes 
have been found to occur in some species of 
scleractinian corals (Chen et al., 2005; Thornhill 
et al., 2006a; Jones et al., 2008). However, it must 
be noted the above studies tracked individual colonies 
over the study period and monitored the changes of 
the phylotypes in each colony, whereas the present 
study sampled along the fixed transect line and 
might overlook the variation of symbiont among 
individual coral colonies. Although the method of 
PCR-RFLP is commonly used for assessing the 
cladal diversity of Symbiodinium, it is thought that 
it underestimates the potential symbiont diversity 
partly due to some phylotypes having low densities 
in corals (Baker, 2003; Goulet, 2006). More research 
in the future is needed to ascertain the actual diversity 
of Symbiodinium using more effective methods like 
SSCP (single-strand conformation polymorphism), 
DGGE (denaturing gradient gel electrophoresis) and 
DNA. Collectively, our results suggest that the shift 
in Symbiodinium communities in response to the 
seasonally fluctuating environments might not be 
a universal feature of coral-algal associations, and 
there may be coral species-specific differences in 
response to environmental change (van Oppen et al., 
2001; Goulet et al., 2008).

The present study contributes to an increasing 
number of investigations that suggest many coral 
species may not respond to the seasonally fluctuating 
environments by significantly changing symbionts 
at the clade level and points to the need for more 
similar studies (Thornhill et al., 2006b; Jones et al., 
2008; Sampayo et al., 2008; Stat et al., 2009) that 
track the longer term trends of coral-algal symbiosis. 
The flexibility and specificity in corals and 
Symbiodinium across temporal and spatial scales 
need to be researched more to understand the future 
of coral reefs under rapid change of global climate.
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