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Abstract: Sargassum naozhouense is a brown seaweed used in folk medicine and applied 

for thousands of years in Zhanjiang, Guangdong province, China. This study is the first 

time to investigate its chemical composition and antiviral activity. On the dry weight basis, 

this seaweed was constituted of ca. 35.18% ash, 11.20% protein, 1.06% lipid and 47.73% 

total carbohydrate, and the main carbohydrate was water-soluble polysaccharide. The 

protein analysis indicated the presence of essential amino acids, which accounted for 

36.35% of the protein. The most abundant fatty acids were C14:0, C16:0, C18:1 and 

C20:4. The ash fraction analysis indicated that essential minerals and trace elements, such 

as Fe, Zn and Cu, were present in the seaweed. IR analysis revealed that polysaccharides 

from cultivated S. naozhouense may be alginates and fucoidan. The polysaccharides 

possessed strong antiviral activity against HSV-1 in vitro with EC50 of 8.92 μg/mL. These 

results demonstrated cultivated S. naozhouense has a potential for its use in functional 

foods and antiviral new drugs. 
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1. Introduction 

Seaweeds, classified into red algae (Rhodophyta), brown algae (Ochrophyta, Phaeophyceae) and 

green algae (Chlorophyta) [1,2], are a renewable natural resource with extensive distribution along the 

Pacific coast [3]. They have been used mainly for human consumption (e.g., as food or as crude drugs  

to treat gallstone, stomach ailment, eczema, cancer, renal disorders, scabies, psoriasis, asthma, 

arteriosclerosis, heart disease, lung diseases and ulcers) and extraction of hydrocolloids, such as agar, 

carrageens and alginates, but are still under-exploited [3–10]. In recent years, seaweeds have caused 

emerging interest in biomedicine and the food area, because they possess a wealth of bioactive 

compounds (such as sulfated polysaccharides, carotenoids, dietary fiber, protein, essential fatty acids, 

vitamins, minerals, terpenoids, oxylipins, phlorotannins and steroids) with potential industrial and 

agricultural applications [11–16]. For example, alginates from brown algae are often used as additives to 

ameliorate the texture of food [7]. Therefore, seaweeds are a promising renewable resource with 

considerable commercial potential for further exploitation.  

Brown seaweeds (e.g., Sargassum fusiforme and Saccharina japonica—formerly Laminaria japonica) 

have been used as Traditional Chinese Medicines in China for thousands of years [17,18].  

Sargassum naozhouense Tseng et Lu, an edible brown algae widely distributed along the coasts of 

Zhanjiang, Guangdong province, China, is commonly consumed as a sea vegetable or as crude drugs for 

treating internal heat, infections, laryngitis and other ailments in locals [19]. According to literature 

reports, the wild S. naozhouense is rich in polysaccharides, amino acids and trace elements [19]. 

However, little is known about the cultivated S. naozhouense, especially its nutritional and functional 

properties. For full utilization of this rich resource, it is imperative to evaluate the nutritional and 

functional properties of the cultivated S. naozhouense. In general, the nutritional properties are usually 

estimated by the chemical composition. Moreover water-soluble sulfated polysaccharides are the main 

constituents of seaweed cell walls, with potent antiviral activities, particularly against HSV [20,21]. 

Therefore, the aim of this study was to investigate the chemical composition of cultivated  

S. naozhouense and the anti-HSV activity of water-soluble polysaccharide from cultivated S. naozhouense. 

2. Results and Discussion 

2.1. Chemical Composition of Cultivated S. naozhouense  

The ash, protein and total carbohydrate were the most abundant constituents in S. naozhouense 

(Table 1). The average contents of protein and ash were 11.20% and 35.18% in dry weight, respectively, 

which were close to those reported for the wild S. naozhouense (13.95% and 41.79%) [19] and higher 

than those of Saccharina japonica (8.70% and 20.00%) [22]. Furthermore, the protein content was 

comparable to that recorded for some species of the same genus, i.e., S. henslowianum (11.52%) and  

S. fusiforme (15.38%) [23,24]. 
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Table 1. Chemical composition of cultivated S. naozhouense (%, w/w on the dry basis) 
a
. 

Components Values 

Ash 35.18 

Protein 11.20 

Lipid 1.06 

Total carbohydrate 47.73 

Total water-soluble carbohydrate 29.74 

Water-soluble polysaccharide 21.01 

Total dietary fiber 4.83 
a
 Average of four analyses. 

Interestingly, the total carbohydrate level (47.73%) was higher than that reported for S. fusiforme 

(46.01%) and wild S. naozhouense (29.37%) [19,24]. Moreover, the main carbohydrates were 

water-soluble polysaccharides (21.01%), yet the dietary fiber content (4.83%) was relatively lower. On 

the other hand, the lipid content (1.06%) was relatively lower. This result was similar to that of wild  

S. naozhouense (2.4%) and other edible brown algae, such as Saccharina japonica (0.2%) and  

S. fusiforme (0.69%) [22,24].  

2.2. Amino Acid Composition  

The amino acid composition of proteins in cultivated S. naozhouense was illustrated (Table 2). The 

contents of amino acids ranged from 0.54 to 13.21 g/100 g protein. The proteins of cultivated  

S. naozhouense contained a high level of amino acids, especially essential amino acids (EEA),  

e.g., leucine (6.52 g/100 g protein) and valine (4.64 g/100 g protein). Furthermore, all essential amino 

acids, such as valine, methionine, isoleucine, leucine, phenylalanine, lysine, histidine, arginine and 

tryptophan, accounting for 47.22% of the total amino acids, were present in this seaweed. The ratio 

value of EAA/NEAA and the essential amino acid index (EAAI) were 0.89 and 66.24, respectively. 

According to FAO/WHO recommended standards of ideal protein [25], the protein of cultivated  

S. naozhouense belongs to a high-quality protein. Furthermore, the protein quality is better than that of  

S. fusiforme, because cysteine is lacking in S. fusiforme [24].  

In addition, the aspartic (8.39 g/100 g protein) and glutamic acids (13.21 g/100 g protein), 

non-essential amino acids (NEEA), were the most abundant amino acids and accounted for 28% of 

total amino acids, which, together with glycine (4.38 g/100 g protein) and alanine (5.27 g/100 g 

protein), were responsible for the special flavor and taste of cultivated S. naozhouense. 
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Table 2. Amino acid composition of cultivated S. naozhouense (g/100 g protein) 
a
. 

Amino acids Contents Amino acids Contents 

Aspartic acid 8.39 Tyrosine 2.95 

Threonine 3.93 Phenylalanine 4.38 

Serine 3.21 Histidine 1.07 

Glutamic acid 13.21 Lysine 3.66 

Proline 3.30 Arginine 4.20 

Glycine 4.38 Tryptophan 0.89 

Alanine 5.27 Total 76.97 

Valine 4.64 EAA 36.35 

Methionine 2.41 NEAA 40.62 

Cysteine 0.54 EAA/NEAA 0.89 

Isoleucine 4.02 EAAI 66.24 

Leucine 6.52   
a
 Average of four analyses; EAA: essential amino acids, Threonine, Valine, Methionine, Isoleucine, Leucine, 

Phenylalanine, Lysine, Histidine, Arginine, and Tryptophan; NEAA: non-essential amino acids; EAAI: 

essential amino acid index. 

2.3. Fatty Acid Composition  

The fatty acid composition of cultivated S. naozhouense is presented (Table 3). This seaweed 

contained high concentrations of saturated fatty acids (SAFA, 33.63% of total of fatty acid), 

monounsaturated fatty acid (MUFA, 10.42% of total of fatty acid), and polyunsaturated fatty acid 

(PUFA, 18.84% of total of fatty acid), even though it had a low level of lipid.  

The main fatty acids in cultivated S. naozhouense were C14:0 (myristic acid), C16:0 (palmitic acid), 

C18:1 (oleic acid) and C20:4 (arachidonic acid), which were also the most abundant fatty acids in 

edible seaweed S. fusiforme [24]. However, C16:0 (palmitic acid), C18:0 (stearic acid) and C18:1 

(oleic acid) were the most abundant fatty acids in wild S. naozhouense [19].  

Table 3. Fatty acid composition of cultivated S. naozhouense (% of total of fatty acid) 
a
. 

Fatty acids Methyl esters (%) Fatty acids Methyl esters (%) 

C6:0 0.44 C18:3ω3 0.25 

C8:0 0.49 C20:1 0.53 

C12:0 0.34 C20:3ω6 2.95 

C14:0 6.7 C20:4ω6 9.61 

C15:0 0.3 C20:5ω3 1.38 

C16:0 24.61 C22:0 0.21 

C16:1 3.55 SAFA 33.63 

C16:2ω6 0.22 MUFA 10.42 

C18:0 0.54 PUFA 18.84 

C18:1 6.34 PUFAω6 13.24 

C18:2trans 3.97 PUFAω3 1.63 

C18:2ω6cis 0.46 Ratioω6/ω3 8.12 
a
 Average of four analyses; SAFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: 

polyunsaturated fatty acids. 
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Although our study revealed that cultivated S. naozhouense had higher total levels of PUFA than 

MUFA, the eicosapentaenoic acid (EPA, C20:5ω3) and essential fatty acids, such as C18:2ω6cis 

(linoleic acid), C18:3ω3 (linolenic acid, and C20:4ω6 (arachidonic acid), the most interesting and 

important fatty acids in terms of nutrition, were present in this seaweed. Further, the ratio of ω6/ω3, 

which the WHO currently recommends should not be higher than 10 in diet as a whole [26], was 8.12, 

which indicated the cultivated S. naozhouense may be used as a sea vegetable or an ingredient to 

reduce ω6/ω3 ratio in diet. 

2.4. Mineral Contents  

Different mineral elements (such as potassium, sodium, phosphorus, calcium, iron, zinc, 

manganese, copper and cadmium) were analyzed by inductive coupled plasma-optical emission 

spectroscopy (ICP-OES) and were summarized (Table 4). The cultivated S. naozhouense contained 

significant amounts of essential minerals (e.g., potassium, sodium, calcium and phosphorus), like  

S. fusiforme and wild S. naozhouense [19,24]. Potassium (4170 mg/100 g dry weight) was the most 

abundant element in the seaweed, followed by sodium (3250 mg/100 g), phosphorus (120 mg/100 g) 

and calcium (66.98 mg/100 g). The ratio of Na/K (0.77) was relatively lower, which was interesting 

from the point of view of nutrition, because high Na/K ratio diets and the incidence of hypertension are 

closely connected [27]. Consequently, the cultivated S. naozhouense may be useful for the regulation 

of the Na/K ratio of diets. 

On the other hand, cultivated S. naozhouense also contained trace elements, such as iron, 

manganese, zinc, copper and cadmium. Iron was the most abundant trace element (147 mg/100 g), 

followed by Zn (9.08 mg/100 g). The content levels of other trace elements (Table 4) were similar to 

those recorded in the earliest reports on seaweeds [15,28]. Furthermore, the contents of some heavy 

metal elements (As, Cd, Cu, Hg and Pb) in this seaweed were below the toxic limits allowed in some 

countries [29]. Hence, cultivated S. naozhouense may be used as a food supplement to provide the 

daily intake of some trace elements (e.g., iron, zinc) for adults, especially iron, since iron deficiency 

would lead to anemia, when the demand for iron is high in growth, high menstrual loss and pregnancy [27]. 

Table 4. Mineral composition of cultivated S. naozhouense (mg/100 g) 
a
. 

Minerals Contents 

K 4170 

Na 3250 

P 120 

Ca 66.98 

Fe 147 

Zn 9.08 

Mn 5.84 

Cu 0.36 

Cd 0.17 
a
 Average of four analyses. 
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2.5. Properties of Polysaccharide  

The content of water-soluble polysaccharides from cultivated S. naozhouense was 21.01% (Table 1). 

The IR spectrum of polysaccharides was recorded in a potassium bromide pellet using an IR 

spectrophotometer. In the IR spectrum (Figure 1), it is being observed that a broad peak at 3415 cm
−1

 

and a small peak at 2930 cm
−1

 are due to the stretching vibrations of O–H and C–H, respectively. The 

bands at 1613 and 1415 cm
−1

 were attributed to carboxylate O–C–O asymmetric stretching and to 

C–OH deformation vibrations, respectively. The absorption at 1039 cm
−1

 was assigned to C–O and 

C–C stretching vibrations of the pyranose ring. The anomeric region of the fingerprint (950–750 cm
−1

) 

exhibited three characteristic absorption bands in alginate polysaccharides (Figure 1, bands at 896, 821 

and 777 cm
−1

, respectively). The band at 896 cm
−1

 is assigned to the β-anomeric C–H deformation 

vibration of β-mannuronic acid residues. The band at 821 cm
−1

 seems to be characteristic of 

mannuronic acid residues. The band at 777 cm
−1

 is assigned to gluluronic acid [30]. In addition, a 

broad band at 1249 cm
−1

 indicated the presence of sulphated ester groups (S=O), which is a 

characteristic component in fucoidan [31–33]. Therefore, the water-soluble polysaccharides from 

cultivated S. naozhouense may be alginates and fucoidan, which should be further demonstrated by 

more studies in the future. 

Figure 1. FT-IR spectrum of water-soluble polysaccharides from cultivated S. naozhouense. 

 

2.6. Cytotoxic and Antiviral Activities of the Polysaccharides  

The polysaccharides exhibited lower cytotoxicity on Vero cells (CC50, MCC > 200 μg/mL). After 

Vero cells had been treated by various polysaccharide dilutions for two days, cell morphology did not 

have any visible alteration under a phase-contrast microscope, and cell layer also did not have any 

destruction by MTT reduction assay. 
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The polysaccharide showed strong antiviral activity against HSV-1 strain F at ≥12.5 μg/mL  

(EC50 = 8.92 μg/mL). In order to compare antiviral potential of the polysaccharides, acyclovir (ACV) 

was used as a positive control and conferred more than 75% cellular protection at 20 μg/mL, which 

was in agreement with that the polysaccharides at 12.5 μg/mL (Table 5). Moreover, the selectivity 

index (SI, CC50/EC50), which was often higher than 10 for a sample with antiviral activity [7], was 

more than 22. It is clear that water-soluble polysaccharides from cultivated S. naozhouense possess 

anti-HSV-1 activity in vitro. 

Herpes simplex virus type 1 (HSV-1), a common human pathogen, is responsible for a broad range 

of human infectious diseases. Though ACV is served as a drug to successfully treat the HSV 

infections, ACV-resistant strains have been found in immune-compromised patients and drug toxicity 

has also been reported [34,35]. Therefore, searching for new antiviral agents is urgently needed. 

Natural bioactive compounds are the best resources for the development of new anti-HSV drugs due to 

their greater efficiency with less toxicity. Sulfated polysaccharides from marine algae, including 

sulfated mannans, galactans, agarans, fucoidans, sulfated rhamnogalactans, fucans and different types 

of carrageenans, were showed to be active against some enveloped viruses, especially HSV and  

HIV [21,36–39]. In this study, the sulfated water-soluble polysaccharides showed strong antiviral 

activity against HSV-1 strain F in vitro within noncytotoxic concentration. Consequently, the sulfated 

polysaccharides from marine algae are a good resource for searching novel therapeutic candidates for HSV. 

Table 5. Effect on HSV-1strain F replication in Vero cells and cytotoxicity of polysaccharide 

from cultivated S. naozhouense. 

Polysaccharide 

Concentration 

(μg/mL) 
100 50 25 12.5 6.25 3.12 1.56 0.78 

Virus 

contrast 

CPE – – – + ++++ ++++ ++++ ++++ ++++ 

EC50 (μg/mL) 8.92 

CC50 (μg/mL) >200 

MCC (μg/mL) >200 

Acyclovir (ACV) 

Concentration 

(μg/mL) 
20 

CPE + 

―++++‖: >75% cytopathic; ―+++‖: 50%–75% cytopathic; ―++‖: 25%–50% cytopathic; ―+‖: 0%–25% cytopathic; ―–‖: no 

cytopathic effect induced by virus. 

3. Experimental Section  

3.1. Algal Material  

The cultivated S. naozhouense was collected from Techeng Island, Guangdong province of China in 

July 2011 and identified by Professor Weixin Li and Dr. Xie Enyi, Fisheries College, Guangdong 

Ocean University, China. A voucher specimen (No. P110701) was deposited in the Key Laboratory of 

Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese 

Academy of Sciences, Guangzhou, China. The fresh seaweeds were washed in freshwater to remove 

sediment, epifauna and epiphytes, and then dried in the air for 10 h, powdered and stored in plastic 

bags at 4 °C until further experiment use. 
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3.2. Chemical Composition  

Total nitrogen was quantified by the Kjeldahl method, and then, the protein content was estimated 

by multiplying the total nitrogen content by a nitrogen conversion factor of 6.25 [8]. Total ashes were 

determined by incinerating seaweed samples in a digitally controlled furnace with temperature being 

gradually increased to 550 °C and maintaining for 6 h, and then were quantified gravimetrically [40]. 

Total lipids, total water-soluble carbohydrates and total dietary fibers were determined by the Soxhlet 

method, anthrone-sulfuric acid colorimetry and the gravimetric method, respectively [40]. Total 

carbohydrate was determined by the difference method [24]. Polysaccharide content was estimated by 

the phenol-sulfuric acid method, using glucose as a standard substance [41]. Amino acids were 

determined by high-performance liquid chromatography (HPLC) according to the GB/T 5009.124-2003 

standard method [42]. Fatty acid composition was determined by gas chromatography-mass 

spectrometry (GC-MS) analysis of their methyl esters on a Varian Gas Chromatograph series 3800 

fitted with a VF-5 MS fused silica capillary column (30 m × 0.25 mm, film thickness 0.25 μm, USA) [43]. 

Mineral analysis was made by inductive coupled plasma-optical emission spectroscopy (ICP-OES) [43]. 

3.3. Preparation of Polysaccharides  

Approximate 20.0 g seaweed powder were accurately weighed and defatted in a Soxhlet apparatus 

with petroleum ether (60–90 °C), then pretreated twice with 80% ethanol to remove some pigments, 

monosaccharides, oligosaccharides and other small molecule materials. After the organic solvent was 

volatilized, the pretreated seaweed powder was extracted twice with distilled water at 90 °C for 1.5 h 

and filtered. The combined aqueous extracts were concentrated in a rotary evaporator to a certain 

volume under reduced pressure at 50 °C, followed by treatment with Sevag Reagent to remove protein 

and centrifugation at 5000 rpm for 20 min to obtain the supernatant. Then the supernatant was poured 

into six volumes of 100% ethanol and was kept at 4 °C overnight. The precipitate containing crude 

polysaccharides was collected by centrifugation, then washed with 70% ethanol, 100% ethanol, ethyl 

ether and acetone, respectively, and finally, freeze-dried, weighed and kept in a vacuum dryer [44–46]. 

3.4. FT-IR Spectroscopy  

Infrared spectra were recorded from a KBr pellet of the polysaccharide on a spectrometer FT-IR 

Nicolet 6700. 

3.5. Determination of Antiviral Activity of the Sulfated Polysaccharide  

3.5.1. Cells and Virus 

African green monkey kidney cells (Vero, ATCC CCL-81), provided by Wuhan Institute of 

Virology, Chinese Academy of Sciences, were cultured in Dulbecco’s modified Eagle medium 

(DMED, Invitrogen) supplemented with 10% FBS (Invitrogen), 0.22% sodium bicarbonate (Sigma) 

and 50 mg/L gentamycin (Invitrogen). HSV-1 strain F (ATCC VR733), obtained from Hong Kong 

University, was propagated in Vero cells and stored at −80 °C until use. 
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3.5.2. Cytotoxicity Assay 

Cytotoxicity of the polysaccharides on Vero cells was evaluated in vitro by MTT assay as described 

by Mosmann [47]. Vero cells (1 × 10
4
 cells/well) were seeded in 96-well plates and incubated at 37 °C 

in 5% CO2 atmosphere for 24 h. Then, various dilutions (concentration from 3.12 to 200 μg/mL) of 

polysaccharide were added to wells, with quadruplicate wells for each concentration, and further 

incubated for 48 h; meanwhile, cells were examined daily under a phase-contrast microscope to 

determine the minimum concentration of polysaccharide (MCC) that caused a microscopically 

detectable alteration of cell morphology. Afterwards, MTT solution was added (final concentration  

0.5 mg/mL) to each well. After 4 h of incubation at 37 °C, the supernatant was removed, and the 

dimethyl sulfoxide (DMSO) was added to solubilize the formazan crystals, then the optical density 

(OD) was measured in a microplate reader at 570 nm. The cytotoxicity was expressed as 50% 

cytotoxic concentration (CC50), which was the concentration of the test substances required to reduce 

cell growth by 50%. 

3.5.3. Antiviral Activity Assay 

The antiviral activity of the polysaccharide was evaluated by cytopathic effect (CPE) inhibition 

assay [48]. In general, Vero cells were seeded in 96-well plates at a density of 1 × 10
4
 cells per well 

and allowed to form a monolayer. The confluent cell monolayer was treated with serial two-fold 

dilutions of polysaccharide and an equal volume of virus suspension (100TCID50) in quadruplicate in 

96-well plates and then incubated at 37 °C in a 5% CO2 atmosphere and observed daily for CPE under 

a light microscope. Meanwhile, acyclovir (ACV) was served as a positive control. The 50% effective 

antiviral concentration (EC50), defined as the concentration that reduced CPE by 50% with respect to 

the virus control, was calculated by MTT method. 

4. Conclusions  

The edible cultivated brown algae S. naozhouense was investigated for its potential nutritional value 

and antiviral activity for the first time. It is characterized by a high level of proteins and a low level of 

lipid, like S. fusiforme and Saccharina japonica used in human nutrition [18] and, therefore, can be 

used for human consumption as an alternative source of essential amino acids and some 

polyunsaturated acids, such as oleic, linoleic, linolenic and eicosapentaenoic acids, or as functional 

ingredients to reduce calories and modify the texture of formulated foods. This seaweed is also rich in 

some minerals, such as iron and zinc, and so may be used as a food supplement to supply these 

minerals at low inclusion levels. Especially, the protein in cultivated S. naozhouense was better than 

that in S. fusifome, because cystein was present in the former. In this regard, cultivated S. naozhouense 

has higher nutritional value compared to S. fusiforme, which has been consumed as a longevity sea 

vegetable in Chinese traditional diets and may be a better alternative resource of the Traditional 

Chinese Medicine S. fusifome. 

On the other hand, cultivated S. naozhouense has a high level of water-soluble polysaccharides, 

which is very interesting, because pharmacological and biological activities of polysaccharides from 

marine algae in therapeutic applications for humans are already well-known [49]. Furthermore, the 
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water-soluble polysaccharides contained sulfate groups and exhibited strong antiviral activity against 

HSV-1 strain F in vitro with an EC50 of 8.92 μg/mL and a SI of >22. Hence, the polysaccharide from 

cultivated S. naozhouense has a potential in antiviral new drugs. Further studies should be carried out 

for the isolation, characterization and other biological screening of the polysaccharide.  

In summary, the brown alga S. naozhouense may represent an interesting advance in the search for 

novel functional applications in relevant industrial uses, including pharmaceuticals, nutraceuticals, 

cosmeceuticals and functional foods.  
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